Transient Control and Influencing Factors Analysis of Multi-Infeed HVDC System Based on Electrochemical Energy Storage
Li Peiping1, Yao Wei1, Gao Dongxue2, Zhang Jingchao2, Li Chenghao3
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. State Grid Henan Electric Power Company Zhengzhou 450000 China; 3. Electric Power Research Institute State Grid Henan Electric Power Company Zhengzhou 450052 China
Abstract:As more and more large-capacity HVDC transmission projects are completed and put into operation, our country's power system is gradually forming an AC-DC hybrid structure, the coupling characteristics of the power grid are more complex, and the system's safe and stable operation is facing greater challenges. The grid-side electrochemical energy storage technology has developed rapidly in recent years and is expected to become an effective control method for improving the stability of AC-DC hybrid systems. Aiming at the problem of continuous commutation failure in the transient process of multi-infeed HVDC system, this paper analyzes the mechanism of continuous commutation failure and the mechanism of the energy storage power station, proposes an improved transient reactive power control strategy for energy storage power station, optimizes the transient control effect of energy storage power station, and further analyzed the impact of the two key factors on the control effect, such as the capacity and access location of the energy storage power station. Taking Henan multi-infeed HVDC system as an example, the simulation results verify that the proposed improved transient reactive power control strategy of energy storage power station can achieve a better commutation failure control effect. In addition, the traversal simulation results also revealed the influence of capacity and access location on the control effect of energy storage power station.
李培平, 姚伟, 高东学, 张景超, 李程昊. 基于电化学储能的多馈入直流系统暂态控制及影响因素分析[J]. 电工技术学报, 2021, 36(zk1): 154-167.
Li Peiping, Yao Wei, Gao Dongxue, Zhang Jingchao, Li Chenghao. Transient Control and Influencing Factors Analysis of Multi-Infeed HVDC System Based on Electrochemical Energy Storage. Transactions of China Electrotechnical Society, 2021, 36(zk1): 154-167.
[1] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771. Tang Guangfu, Pang Hui, He Zhiyuan.R&D and application of advanced power transmission tech- nology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771. [2] 李程昊, 谭阳琛, 熊永新, 等. 特高压直流多馈入系统换相失败预防协调控制[J]. 电网技术, 2019, 43(10): 3532-3542. Li Chenghao, Tan Yangchen, Xiong Yongxin, et al.Coordinated control of UHVDC multi-infeed system for commutation failure prevention[J]. Power System Technology, 2019, 43(10): 3532-3542. [3] 汤奕, 郑晨一. 高压直流输电系统换相失败影响因素研究综述[J]. 中国电机工程学报, 2019, 39(2): 499-513, 647. Tang Yi, Zheng Chenyi.Review on influencing factors of commutation failure in HVDC systems[J]. Proceedings of the CSEE, 2019, 39(2): 499-513, 647. [4] 李新年, 易俊, 李柏青. 直流输电系统换相失败仿真分析及运行情况统计[J]. 电网技术, 2012, 36(6): 266-271. Li Xinnian, Yi Jun, Li Baiqing.Simulation analysis and operation statistics of commutation failure in HVDC transmission system[J]. Power System Tech- nology, 2012, 36(6): 266-271. [5] Zhou Baorong, Du Zhaobin, Luo Donghao, et al.VDCOL parameters design of multi-infeed HVDC based on a simplified model of DC P-Q coupling recovery[C]//2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, 2014: 1-5. [6] 王玉, 侯玉强, 刘福锁, 等. 考虑多直流协调恢复的换相失败预测控制启动值优化方法[J]. 电力系统自动化, 2018, 42(22): 85-90, 158. Wang Yu, Hou Yuqiang, Liu Fusuo, et al.Optimi- zation method for startup threshold of commutation failure prediction control considering coordinated recovery of multi-infeed HVDC systems[J]. Auto- mation of Electric Power Systems, 2018, 42(22): 85-90, 158. [7] 郭春义, 赵剑, 刘炜, 等. 抑制高压直流输电系统换相失败方法综述[J]. 中国电机工程学报, 2018, 38(增刊1): 1-10. Guo Chunyi, Zhao Jian, Liu Wei, et al.A review of methods to mitigate the commutation failure for LCC-HVDC[J]. Proceedings of the CSEE, 2018, 38(S1): 1-10. [8] 金一丁, 于钊, 李明节, 等. 新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J]. 电网技术, 2018, 42(7): 2095-2102. Jin Yiding, Yu Zhao, Li Mingjie, et al.Comparison of new generation synchronous condenser and power electronic reactive-power compensation devices in application in UHV DC/AC grid[J]. Power System Technology, 2018, 42(7): 2095-2102. [9] Lei Yunkai, Li Ting, Tang Quan, et al.Comparison of UPFC, SVC and STATCOM in improving com- mutation failure immunity of LCC-HVDC systems[J]. IEEE Access, 2020, 8: 135298-135307. [10] 周泓宇, 李培平, 姚伟, 等. 抑制直流后续换相失败的电化学储能有功控制策略[J/OL]. 电力系统自动化, http://dx.doi.org/10.7500/AEPS20210113005. Zhou Hongyu, Li Peiping, Yao Wei, et al. Active power control strategy of electrochemical energy storage for mitigating subsequent DC commutation failures[J/OL]. Automation of Electric Power Systems, http://dx.doi.org/10.7500/AEPS20210113005. [11] 李建林, 马会萌, 袁晓冬, 等. 规模化分布式储能的关键应用技术研究综述[J]. 电网技术, 2017, 41(10): 3365-3375. Li Jianlin, Ma Huimeng, Yuan Xiaodong, et al.Overview on key applied technologies of large-scale distributed energy storage[J]. Power System Techno- logy, 2017, 41(10): 3365-3375. [12] 尚瑨, 邰能灵, 刘琦, 等. 采用区间控制的蓄电池储能电站调峰运行控制策略[J]. 电工技术学报, 2015, 30(16): 221-229. Shang Jin, Tai Nengling, Liu Qi, et al.Load shifting scheme of battery energy storage system based on interval controlling[J]. Transactions of China Electro- technical Society, 2015, 30(16): 221-229. [13] 张圣祺, 袁蓓, 季振东, 等. 基于分布式控制原理的电池储能系统二次调频控制[J]. 电工技术学报, 2019, 34(增刊2): 637-645. Zhang Shengqi, Yuan Bei, Ji Zhendong, et al.A secondary frequency control based on the distributed control theory considering battery energy storage systems[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 637-645. [14] 张江林, 庄慧敏, 刘俊勇, 等. 分布式储能系统参与调压的主动配电网两段式电压协调控制策略[J]. 电力自动化设备, 2019, 39(5): 15-21, 29. Zhang Jianglin, Zhuang Huimin, Liu Junyong, et al.Two-stage coordinated voltage control scheme of active distribution network with voltage support of distributed energy storage system[J]. Electric Power Automation Equipment, 2019, 39(5): 15-21, 29. [15] 熊连松, 修连成, 王慧敏, 等. 储能系统抑制电网功率振荡的机理研究[J]. 电工技术学报, 2019, 34(20): 4373-4380. Xiong Liansong, Xiu Liancheng, Wang Huimin, et al.Mechanism of energy storage system to suppress grid power oscillations[J]. Transactions of China Electro- technical Society, 2019, 34(20): 4373-4380. [16] 孙玉树, 张国伟, 唐西胜, 等. 风电功率波动平抑下的MPC双储能控制策略研究[J]. 电工技术学报, 2019, 34(3): 571-578. Sun Yushu, Zhang Guowei, Tang Xisheng, et al.Research on MPC and daul energy storage control strategies with wind power fluctuation mitigation[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 571-578. [17] 刘颖, 戴栋, 汪娟娟, 等. 基于逆变侧定电压控制的HVDC系统稳态和暂态响应特性研究[J]. 电力系统保护与控制, 2017, 45(24): 1-8. Liu Ying, Dai Dong, Wang Juanjuan, et al.Transient and steady responses in HVDC system based on constant voltage control at inverter side[J]. Power System Protection and Control, 2017, 45(24): 1-8. [18] 户龙辉. 锂离子电池储能系统建模及其对电网稳定性影响研究[D]. 长沙: 湖南大学, 2014. [19] Wang Puyu, Wang Yongkun, Jiang Ningqiang, et al.A comprehensive improved coordinated control strategy for a STATCOM integrated HVDC system with enhanced steady/transient state behaviors[J]. International Journal of Electrical Power and Energy Systems, 2020, 121: 106091. [20] 高本锋, 毛亚鹏. STATCOM与HVDC综合协调控制策略[J]. 电测与仪表, 2018, 55(14): 82-87, 112. Gao Benfeng, Mao Yapeng.Coordinated control strategy of STATCOM and HVDC[J]. Electrical Measurement & Instrumentation, 2018, 55(14): 82-87, 112. [21] 刘席洋, 王增平, 郑博文, 等. LCC-HVDC故障恢复型连续换相失败机理分析与抑制措施[J]. 中国电机工程学报, 2020, 40(10): 3163-3172. Liu Xiyang, Wang Zengping, Zheng Bowen, et al.Mechanism analysis and mitigation measures for continuous commutation failure during the resto- ration of LCC-HVDC[J]. Proceedings of the CSEE, 2020, 40(10): 3163-3172. [22] 刘磊, 林圣, 何正友. 基于虚拟换相面积缺乏量的HVDC系统连续换相失败抑制策略[J]. 中国电机工程学报, 2018, 38(18): 5361-5368. Liu Lei, Lin Sheng, He Zhengyou.A novel method based on virtual commutation area insufficient to mitigate the continuous commutation failure for HVDC[J]. Proceedings of the CSEE, 2018, 38(18): 5361-5368. [23] 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89. Sun Yushu, Yang Min, Shi Changli, et al.Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1): 80-89. [24] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy inter- connection[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 874-884. [25] 刘璐, 牛萌, 李建林, 等. 电化学储能系统标准现状与体系架构研究[J]. 电力建设, 2020, 41(4): 63-72. Liu Lu, Niu Meng, Li Jianlin, et al.Research on the current status and system architecture of electro- chemical energy storage system standards[J]. Electric Power Construction, 2020, 41(4): 63-72.