Abstract:To research the characteristics of streamer under DC voltage and the reversion of polarity effect under low pressure condition, this paper carried out laboratory investigations of positive and negative DC streamer discharges by low pressure discharge teat platform for 50-200 mm rod-plane gaps within 0.1-10 kPa. The relationship between discharge voltage U and pressure P of different gap length and voltage modes are obtained, and the change of external characteristics of streamer channel and variation of polarity effect with the increase of pressure value are analyzed. The results show that, the profile of streamer have significant differences within 0.1-10 kPa under positive and negative DC voltage. The elongation of positive streamer under positive DC voltage increases with pressure, and the breakdown under negative DC voltage result from positive and negative streamers together also lengthen with pressure. The positive streamer triggered by self-organized ionization formed on the surface of anode plane electrode of 50 mm and 100 mm gaps is the cause of the reversion of polarity effect, and the multiple positive streamers triggered by self-organized ionization simultaneously formed on the surface of anode plane electrode of 150 mm and 200 mm gaps is the reason of the reversion of polarity effect. These results have reference value for the study of discharge characteristics under low pressure condition.
杨亚奇, 李卫国. 低气压直流电压下流注放电特性与极性效应的反转[J]. 电工技术学报, 2018, 33(13): 3080-3088.
Yang Yaqi, Li Weiguo. DC Streamer Discharge Characteristics and the Reversion of Polarity Effect under Low Pressure Condition. Transactions of China Electrotechnical Society, 2018, 33(13): 3080-3088.
[1] Gollor M, Rogalla K.HV design of vacuum insulated power supplies for space applications[J]. IEEE Transactions on Electrical Insulation, 1993, 28(4): 667-680. [2] Komatsubara M, Ishii M, Tsumura E.Research on outgas and light emission from electrostatic discharge on polymer films in vacuum[J]. Transactions-Institute of Electrical Engineering of Japan A, 1994, 144(7): 528-534. [3] 刘浩, 刘尚和, 魏明, 等. 高空低气压电晕放电特性模拟实验研究[J]. 高电压技术, 2015, 41(5): 1704-1708. Liu Hao, Liu Shanghe, Wei Ming, et al.Research of corona discharge characteristics for low pressure high altitude based on simulation experiments[J]. High Voltage Engineering, 2015, 41(5): 1704-1708. [4] 刘浩, 刘尚合, 曹鹤飞, 等. 高空低气压、低温环境下的电晕放电模拟试验系统[J]. 高电压技术, 2015, 41(2): 578-583. Liu Hao, Liu Shanghe, Cao Hefei, et al.Experimental simulation system of corona discharges under high-altitude, low-pressure and low-temperature conditions[J]. High Voltage Engineering, 2015, 41(2): 578-583. [5] Tanja M P B, Eddie M V V, Ute E. Branching of positive discharge streamers in air at varying pressure[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 264-265. [6] Tanja M P B, Eddie M V V, Ute E. Time resolved measurements of streamer inception in air[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 908-909. [7] 孙才新, 蒋兴良, 司马文霞, 等. 海拔4000m以上短间隙交流放电特性及电压校正[J]. 中国电机工程学报, 2002, 22(10): 116-120. Sun Caixin, Jiang Xingliang, Sima Wenxia, et al.AC discharge performance and voltage correction of short air gaps in 4000m and above altitude districts[J]. Proceedings of the CSEE, 2002, 22(10): 116-120. [8] 孟晓波, 惠建峰, 卞星明, 等. 低气压下流注放电特性的研究[J]. 中国电机工程学报, 2011, 31(25): 139-149. Meng Xiaobo, Hui Jianfeng, Bian Xingming, et al.Research on the characteristic of streamer discharge at low air pressure[J]. Proceedings of the CSEE, 2011, 31(25): 139-149. [9] 李敏, 汪沨, 许松枝, 等. 基于分形理论的SF6/N2混合气体放电仿真[J]. 电工技术学报, 2016, 31(24): 88-95. Li Min, Wang Feng, Xu Songzhi, et al.Simulation discharge on SF6/N2 gas mixtures based on fractal theory[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 88-95. [10] 汪沨, 李锰, 潘雄峰, 等. 基于FEM-FCT算法的SF6/N2混合气体中棒-板间隙电晕放电特性的仿真研究[J]. 电工技术学报, 2013, 28(9): 261-267. Wang Feng, Li Meng, Pan Xiongfeng, et al.Corona discharge simulation of rod-plate gap in SF6/N2 gas mixtures using FEM-FCT method[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 261-267. [11] 汪沨, 李敏, 李锰, 等. 基于ETG-通量校正传输法的短间隙SF6/N2混合气体流注放电数值仿真研究[J]. 电工技术学报, 2016, 31(6): 232-241. Wang Feng, Li Min, Li Meng, et al.Numerical simulation of short gap streamer discharge in SF6/N2 gas mixtures based on Eur-Taylor-Galerkin-Flux corrected transport method[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 232-241. [12] 司马文霞, 叶轩, 谭威, 等. 高海拔220kV输电线路绝缘子串与并联间隙雷电冲击绝缘配合研究[J]. 中国电机工程学报, 2012, 32(10): 168-176. Sima Wenxia, Ye Xuan, Tan Wei, et al.Lightning insulating co-ordination between insulator string and parallel gap device of 220kV transmission line at high altitude area[J]. Proceedings of the CSEE, 2012, 32(10): 168-176. [13] 廖永力, 李瑞海, 李小建, 等. 典型空气间隙放电电压修正的试验研究[J]. 中国电机工程学报, 2012, 32(28): 171-176. Liao Yongli, Li Ruihai, Li Xiaojian, et al.Experimental research on typical air gap test voltage correction[J]. Proceedings of the CSEE, 2012, 32(28): 171-176. [14] 王羽, 李志军, 戴敏, 等. 长空气间隙负极性操作冲击放电特性研究(Ⅰ)-试验研究[J]. 中国电机工程学报, 2014, 34(21): 3534-3540. Wang Yu, Li Zhijun, Dai Min, et al.Research on typical long air gaps with negative switching impulses(Ⅰ) -experiments[J]. Proceedings of the CSEE, 2014, 34(21): 3534-3540. [15] 丁玉剑, 李庆峰, 廖蔚明, 等. 高海拔地区典型长空气间隙的操作冲击放电特性和海拔校正[J]. 高电压技术, 2013, 39(6): 1441-1446. Ding Yujian, Li Qingfeng, Liao Weiming, et al.Switching impulse discharge characteristics and altitude corrections for typical long air gaps at high altitude areas[J]. High Voltage Engineering, 2013, 39(6): 1441-1446. [16] 蒋兴良, 于亮, 苑吉河, 等. 低气压棒-板间隙操作冲击放电特性及电压校正[J]. 高电压技术, 2007, 33(11): 70-74. Jiang Xingliang, Yu Liang, Yuan Jihe, et al.Switching impulse discharge performance and voltage correction of rod-plane air gaps at low atmospheric pressure[J]. High Voltage Engineering, 2007, 33(11): 70-74. [17] 蒋兴良, 于亮, 胡建林, 等. 棒-板长空气间隙在低气压下雷电冲击特性及电压校正[J]. 中国电机工程学报, 2005, 25(11): 152-156. Jiang Xingliang, Yu Liang, Hu Jianlin, et al.Lightning impulse discharge performance and voltage correction of long air gaps at lower atmospheric pressure[J]. Proceedings of the CSEE, 2005, 25(11): 152-156. [18] 蒋兴良, 赵智亮, 孙才新, 等. 低气压正棒-板短间隙操作冲击放电特性[J]. 高电压技术, 2002, 28(7): 7-9. Jiang Xingliang, Zhao Zhiliang, Sun Caixin, et al.Switching impulse discharge performance and voltage correction for positive rod-plane short air gaps in low air-pressure[J]. High Voltage Engineering, 2002, 28(7): 7-9. [19] Dmitry F O, Mikhail N S, Philip J H, et al.Study of streamers in gradient density air: table top modeling of red sprites[J]. Geophysical Research Letters, 2010, 37(14): 227-235. [20] Nakano Y, Kojima H, Hayakawa N, et al.Pre-discharge and flashover characteristics of impulse surface discharge in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(1): 403-410. [21] Fukuoka Y, Yasuoka T, Kato K, et al.Breakdown conditioning characteristics of long gap electrodes in a vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(3): 577-582. [22] Xu Shuo, Kumada A, Hidaka K, et al.Observation of pre-discharge phenomena with point-to-plane electrodes in vacuum under AC[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3633-3640. [23] Bzaelyan E M, Raizer Y P, Aleksandrov N L.The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader[J]. Journal of Physics D: Applied Physics, 2007, 40: 4133-4144. [24] Pancheshnyi S, Nudnova M, Starikovskii A. Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation[J]. Physics Review E, 2005, 71(1): 016407-1-016407-12. [25] Engel A V.Ionized gases[M]. London: Oxford University Press, 1965. [26] Rizk F A M, Trinh G N. High voltage engineering[M]. New York: CRC Press, 2014. [27] Morrow R, Lowke J J.Streamer propagation in air[J]. Journal of Physics D: Applied Physics, 1997, 30: 614-627. [28] Shirai N, Uchida S, Tochikubo F.Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric DC glow discharge using a liquid electrode[J]. Plasma Source Science and Technology, 2014, 23(5): 054010. [29] Maszl C, Laimer J, Störi H.Observations of self-organized luminous patterns on the anode of direct-current glow discharge at higher pressures[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2118-2119. [30] Shirai N, Uchida S, Tochikubo F.Self-organized anode pattern on surface of liquid or mental anode in atmospheric DC glow discharges[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2652-2653. [31] Cobine J D.Gases conductors[M]. London: McGraw-Hill Book Company, 1941. [32] 严璋, 朱德恒. 高电压绝缘技术[M]. 北京: 中国电力出版社, 2007. [33] Xiao Dengming.Gas discharge and gas insulation[M]. Shanghai: Shanghai Jiao Tong University, 2017. [34] 刘典, 夏胜国. 短空气间隙放电流注分叉特性实验研究[J]. 高电压技术, 2015, 41(1): 282-286. Liu Dian, Xia Shengguo.Experimental studies on characteristics of streamer branching in short air gaps discharges[J]. High Voltage Engineering, 2015, 41(1): 282-286. [35] Andrey S, Nickolay A.Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1): 61-110. [36] Ryo O, Oda T.Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge[J]. Journal of Physics, 2002, 35(17): 2133-2138.