[1] Miller R J D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action[J]. Science, 2014, 343(6175): 1108-1116.
[2] Zewail A H.Laser femtochemistry[J]. Science, 1988, 242(4886): 1645-1653.
[3] Williamson S, Mourou G, Letzring S.Picosecond electron diffraction[C]//Proceeding of the International Socity for Optical Engineering, 1983, 0348: 313-317.
[4] Wolf T J A, Sanchez D M, Yang J, et al. The photochemical ring-opening of 1, 3-cyclohexadiene imaged by ultrafast electron diffraction[J]. Nature Chemistry, 2019, 11(6): 504-509.
[5] Ziegler A.Ultrafast materials science and 4D imaging with atomic resolution both in space and time[J]. MRS Bulletin, 2011, 36(2): 121-131.
[6] Kabius B C, Browning N D, Thevuthasan S, et al.Dynamic processes in biology, chemistry, and materials science: opportunities for ultrafast transmission electron microscopy-workshop summary report[R]. Office of Scientific and Technical Information (OSTI), 2012.
[7] Charles Williamson J, Zewail A H.Ultrafast electron diffraction. Velocity mismatch and temporal resolution in crossed-beam experiments[J]. Chemical Physics Letters, 1993, 209(1/2): 10-16.
[8] Michalik A M, Sherman E Y, Sipe J E.Theory of ultrafast electron diffraction: the role of the electron bunch properties[J]. Journal of Applied Physics, 2008, 104(5): 054905.
[9] Zhu Pengfei, Zhu Y, Hidaka Y, et al.Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17(6): 063004.
[10] Rosenzweig J, Travish G, Serafini L.The physics and applications of high brightness electron beams[C]//Proceedings of the ICFA Workshop: Chia Laguna, Sardinia, Italy, 2002: 1-18.
[11] Murphy D, Speirs R W, Sheludko D V, et al.Detailed observation of space-charge dynamics using ultracold ion bunches[J]. Nature Communications, 2014, 5: 4489.
[12] Sciaini G, Miller R J D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics[J]. Reports on Progress in Physics, 2011, 74(9): 096101.
[13] Chatelain R P, Morrison V, Godbout C, et al.Space-charge effects in ultrafast electron diffraction patterns from single crystals[J]. Ultramicroscopy, 2012, 116: 86-94.
[14] Williamson J C, Cao J, Ihee H, et al.Clocking transient chemical changes by ultrafast electron diffraction[J]. Nature, 1997, 386(6621): 159-162.
[15] Lobastov V A, Srinivasan R, Zewail A H.Four-dimensional ultrafast electron microscopy[J]. Proceedings of the National Academy of Sciences, 2005, 102(20): 7069-7073.
[16] Baum P.On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction[J]. Chemical Physics, 2013, 423: 55-61.
[17] Harb M, Peng Weina, Sciaini G, et al.Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si[J]. Physical Review B, 2009, 79(9): 094301.
[18] Miller R J D, Ernstorfer R, Harb M, et al. `Making the molecular movie': first frames[J]. Acta Crystallographica Section A Foundations of Crystallography, 2010, 66(2): 137-156.
[19] van Oudheusden T, Pasmans P L E M, van der Geer S B, et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction[J]. Physical Review Letters, 2010, 105(26): 264801.
[20] Tokita S, Hashida M, Inoue S, et al.Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression[J]. Physical Review Letters, 2010, 105(21): 215004.
[21] Kassier G H, Haupt K, Erasmus N, et al.Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction[J]. Journal of Applied Physics, 2009, 105(11): 113111.
[22] Wang X J, Xiang D, Kim T K, Ihee H.Potential of femtosecond electron diffraction using near-relativistic electrons from a photocathode RF gun[J]. Journal-Korean Physical Society, 2006, 48(3): 390-396.
[23] Hastings J B, Rudakov F M, Dowell D H, et al.Ultrafast time-resolved electron diffraction with megavolt electron beams[J]. Applied Physics Letters, 2006, 89(18): 184109.
[24] Musumeci P, Moody J T, Scoby C M, et al.High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector[J]. Review of Scientific Instruments, 2010, 81(1): 013306.
[25] Musumeci P, Moody J T, Scoby C M, et al.Laser-induced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction[J]. Applied Physics Letters, 2010, 97(6): 063502.
[26] Murooka Y, Naruse N, Sakakihara S, et al.Transmission-electron diffraction by MeV electron pulses[J]. Applied Physics Letters, 2011, 98(25): 251903.
[27] Giret Y, Naruse N, Daraszewicz S L, et al.Determination of transient atomic structure of laser-excited materials from time-resolved diffraction data[J]. Applied Physics Letters, 2013, 103(25): 253107.
[28] Zhu Pengfei, Zhu Y, Hidaka Y, et al.Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17(6): 063004.
[29] Weathersby S P, Brown G, Centurion M, et al.Mega-electron-volt ultrafast electron diffraction at SLAC national accelerator laboratory[J]. The Review of Scientific Instruments, 2015, 86(7): 073702.
[30] Lu X H, Tang C X, Li R K, et al.Generation and measurement of velocity bunched ultrashort bunch of pC charge[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18(3): 032802.
[31] Maxson J, Cesar D, Calmasini G, et al.Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance[J]. Physical Review Letters, 2017, 118(15): 154802.
[32] Zhao Lingrong, Wang Zhe, Lu Chao, et al.Terahertz streaking of few-femtosecond relativistic electron beams[J]. Physical Review X, 2018, 8(2): 021061.
[33] 赵凌荣. 亚十飞秒兆电子伏超快电子衍射关键技术研究[D]. 上海: 上海交通大学, 2019.
[34] Kim H W, Vinokurov N A, Baek I H, et al.Towards jitter-free ultrafast electron diffraction technology[J]. Nature Photonics, 2020, 14(4): 245-249.
[35] Kim H W, Baek I H, Shin J, et al.Method for developing a sub-10 fs ultrafast electron diffraction technology[J]. Structural Dynamics, 2020, 7(3): 034301.
[36] Qi Fengfeng, Ma Zhuoran, Zhao Lingrong, et al.Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 2020, 124(13): 134803.
[37] Ischenko A A, Weber P M, Miller R J D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics[J]. Chemical Reviews, 2017, 117(16): 11066-11124.
[38] Gordon M, van der Geer S B, Maxson J, et al. Point-to-point Coulomb effects in high brightness photoelectron beam lines for ultrafast electron diffraction[J]. Physical Review Accelerators and Beams, 2021, 24(8): 084202.
[39] Li Renkai, Tang Chuanxiang, Du Yingchao, et al.Experimental demonstration of high quality MeV ultrafast electron diffraction[J]. Review of Scientific Instruments, 2009, 80(8): 083303.
[40] Glownia J M, Gumerlock K, Lemke H T, et al.Pump-probe experimental methodology at the Linac Coherent Light Source[J]. Journal of Synchrotron Radiation, 2019, 26(Pt 3): 685-691.
[41] Pirez E, Musumeci P, Maxson J, et al.S-band 1.4 cell photoinjector design for high brightness beam generation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865: 109-113.
[42] Song Yifang, Yang Jinfeng, Wang Jian, et al.Development of a 1.4-cell RF photocathode Gun for single-shot MeV ultrafast electron diffraction devices with femtosecond resolution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1031: 166602.
[43] Teichert J.Superconducting RF guns: emerging technology for future accelerators[C]//2014 5th International Particle Acceleration Conference, Dresden, Germany, 2014: 4085-4089.
[44] Duran Yildiz H, Porsuk D, Cakir R, et al.Design and comparison of superconducting RF gun cavities and beam dynamics for linear electron accelerators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 939: 74-82.
[45] Lewis S M, Merrick J, Othman M A K, et al. A THz-driven field emission electron gun[C]//2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 2020: 1-2.
[46] Turnár S, Hebling J, Fülöp J A, et al.Design of a THz-driven compact relativistic electron source[J]. Applied Physics B, 2021, 127(3): 1-7.
[47] He Z H, Thomas A G R, Beaurepaire B, et al. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate[J]. Applied Physics Letters, 2013, 102(6): 064104.
[48] Kim H T, Pathak V B, Hojbota C I, et al.Laser wakefield electron acceleration with PW lasers and future applications[J].Journal of the Korean Physical Society, 2022, 80(8): 670-683.
[49] Wimmer L, Herink G, Solli D R, et al.Terahertz control of nanotip photoemission[J]. Nature Physics, 2014, 10(6): 432-436.
[50] Fabianska J, Kassier G, Feurer T.Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution[J]. Scientific Reports, 2014, 4: 5645.
[51] Kealhofer C, Schneider W, Ehberger D, et al.All-optical control and metrology of electron pulses[J]. Science, 2016, 352(6284): 429-433.
[52] Xu Yang, Wang Jian, Song Yifang, et al.A proposal of multipulse-driven split-ring resonator for femtosecond resolution bunch length measurement[C]//Proceedings of the International Society for Optical Engineering, 2022, 12291: 37-43.
[53] Shalaby M, Hauri C P.Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J]. Nature Communications, 2015, 6: 5976.
[54] Liao Guoqian, Li Yutong, Liu Hao, et al.Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 3994-3999.
[55] Nanni E A, Huang W R, Hong K H, et al.Terahertz-driven linear electron acceleration[J]. Nature Communications, 2015, 6: 8486.
[56] Huang W R, Fallahi A, et al.Terahertz-driven, all-optical electron gun[J]. Optica, 2016, 3: 1209-1212. |