Abstract:Based on the idea of finite element method, the three-dimensional multi-scale model is calculated by domain decomposition method, in other words, using domain decomposition method to decompose the domain of original problem into micro-model and macro-model and solving sub-domain problem separately by finite element method. In this way, the calculation results of micro-model and macro-model are both obtained under the condition of limited computing resources. In view of slow rate of convergence of domain decomposition iterative algorithm, the generalized minimal residual (GMRES) iterative algorithm for domain decomposition method is derived without coefficient matrix. Specifically, the coefficient matrix of linear equations can’t be given literally. Compared with 2-D finite element method, the correctness of the generalized minimal residual iteration algorithm is proved and this algorithm can be used to calculate the ground current field of high voltage direct current (HVDC), the results of electric field distribution near and far from the ground electrode are both obtained.
陶瑞祥, 王泽忠. 基于有限元的电场区域分解法的广义极小残量迭代算法[J]. 电工技术学报, 2018, 33(2): 225-231.
Tao Ruixiang, Wang Zezhong. Generalized Minimal Residual Iteration Method for Finite Element Based Domain Decomposition Technique for Electric Field Problem. Transactions of China Electrotechnical Society, 2018, 33(2): 225-231.
[1] Brandt A. Multilevel adaptive solutions to boundary value problems[J]. Mathematics of Computation, 1977, 31(138): 33-49. [2] 王德伦, 王淑芬, 李涛. 平面四杆机构近似运动综合的自适应方法[J]. 机械工程学报, 2016, 37(12): 21-26. Wang Delun, Wang Shufen, Li Tao. New approach for mechanisms synthesis by adaptive saddle- fitting[J]. Chinese Journal of Mechanical Engineering, 2001, 37(12): 21-26. [3] Jenny P, Lee S H. Multiscale finite-volume method for elliptic problems in subsurface flow simulation[J]. Journal of Computational Physics, 2003, 187(1): 47-67. [4] Thomas Y H, Wu X H, Cai Z Q. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillation coefficients[J]. Mathematics of Computation, 1999, 68(227): 913-943. [5] Cui J Z, Cao L Q. Two-scale asymptotic analysis method for a class of elliptic boundary value pro- blems with small periodic coefficients[J]. Mathematic Numerical Science, 1999, 21(1): 19-28. [6] Ren W Q, E W N. Heterogeneous multiscale method for the modeling of complex fluids and micro- fluidics[J]. Journal of Computational Physics, 2005, 204(1): 1-26. [7] Mihai D, Bjorn E. Wavelet-based numerical homogenization[J]. SIAM Journal on Numerical Analysis, 1998, 35(2): 540-559. [8] 王泽忠, 董博, 刘春明, 等. 华北地区大地电性结构三维建模及磁暴感应地电场有限元计算[J]. 电工技术学报, 2015, 30(3): 61-66. Wang Zezhong, Dong Bo, Liu Chunming, et al. Three- dimensional earth conductivity structure modeling in north China and calculation of geoelectromagnetic fields during geomagnetic disturbances based on finite element method[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 61-66. [9] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al. Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electro- technical Society, 2016, 31(1): 71-79. [10] 律方成, 张兆华, 汪佛池. 基于有限元的动车组高压隔离开关均压环优化设计律[J]. 电工技术学报, 2016, 31(19): 218-223. Lü Fangcheng, Zhang Zhaohua, Wang Fochi. Design optimization of grading ring for electric multiple unit high voltage disconnector based on FEM[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 218-223. [11] 倪有源, 黄亚, 赵亮. 新型结构永磁屏蔽电机三维磁场分析和电感计算[J]. 电工技术学报, 2015, 30(1): 98-104. Ni Youyuan, Huang Ya, Zhao Liang. Analysis of 3-dimensional field and calculation of inductance for a new structure of a permanent magnet canned motor[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 98-104. [12] 吕志清, 安翔, 洪伟. 棱边元分区的区域分解算法及其在电磁问题中的应用[J]. 电子与信息学报, 2007, 29(5): 1232-1235. Lü Zhiqing, An Xiang, Hong Wei. Edge-element partitioning domain decomposition method for electromagnetic problems[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1232-1235. [13] 代鸿, 李茂军. 使用动态松弛因子的并行区域分解法[J]. 太原师范学院学报, 2010, 9(4): 6-9, 28. Dai Hong, Li Maojun. A parallel domain decompo- sition method using dynamic relaxation parameter[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2010, 9(4): 6-9, 28. [14] 余德浩. 无界区域D-N区域分解算法的松弛因子选取与收敛速率[J]. 计算物理, 1998, 15(1): 54-58. Yu Dehao. Selection of relaxation factor and convergence rate for D-N domain decomposition method over unbounded domain[J]. Chinese Journal of Computational Physics, 1998, 15(1): 54-58. [15] 李世琼, 王泽忠. 开域静电场全源积分人工边界法的GMRES迭代算法[J]. 电工技术学报, 2014, 29(10): 206-212. Li Shiqiong, Wang Zezhong. GMRES iteration method of FEM-actual charge method for open boundry electrostatic field problems[J]. Transactions of China Electrotechnical Society, 2014, 29(10): 206-212. [16] Aiello G, Alfonzetti S, Borzì G, et al. GMRES solution of FEM-BEM global systems for electro- static problems without voltaged conductors[J]. IEEE Transactions on Magnetics, 2013, 49(5): 1701-1704. [17] 李亚莎. 高精度快速边界元法及其在绝缘子电场计算中应用研究[D]. 北京: 华北电力大学, 2007. [18] 夏沛, 汪芳宗. 大规模电力系统快速潮流计算方法研究[J]. 电力系统保护与控制, 2012, 40(9): 38-42. Xia Pei, Wang Fangzong. Study on fast power flow calculation method of large-scale power systems[J]. Power System Protection and Control, 2012, 40(9): 38-42. [19] 胡博, 谢开贵, 曹侃. 基于Beowulf集群的大规模电力系统牛顿法潮流求解的并行GMRES方法[J]. 电工技术学报, 2011, 26(4): 145-152. Hu Bo, Xie Kaigui, Cao Kan. Parallel GMRES techniques for solving Newton power flow of large scale power systems on the Beowulf cluster[J]. Transactions on China Electrotechnical Society, 2011, 26(4): 145-152. [20] Saad Y. 稀疏线性系统的迭代方法[M]. 2版. 北京: 科学出版社, 2009. [21] 王建武, 文习山, 杜忠东, 等. ±800kV圆环接地极电流场温度场耦合计算[J]. 电工技术学报, 2009, 24(3): 14-19. Wang Jianwu, Wen Xishan, Du Zhongdong, et al. Coupling calculation of current field and temperature field of ±800kV cirque DC grounding-electrode[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 14-19. [22] 朱汉青. 分析Laplace问题的重叠和不重叠区域分解法[J]. 淮阴师范学院学报(自然科学版), 2006, 5(1): 33-36, 40. Zhu Hanqing. The ODDM and the NDDM for analysis of the Laplace problems[J]. Journal of Huaiyin Teachers College(Natural Science Edition), 2006, 5(1): 33-36, 40. 23 (编辑 郭丽军)