Thermal Effects in Skin Tumor Exposed to High-Frequency Nanosecond Pulse Bursts: Multi-Parametric Finite Element Simulation and Experiment
Mi Yan1, Peng Wencheng1, Rui Shaoqin2, Kuang Dongdong3, Luo Qing3
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China. 2. State Grid Tianjin Power Maintenance Company Tianjin 300010 China. 3. College of Bioengineering Chongqing University Chongqing 400030 China
Abstract:Combined with the advantages of microsecond pulsed electric field and nanosecond pulsed electric field for the treatment of tumors, this work introduces high-frequency nanosecond pulse bursts. To study the thermal effects of the high-electric-field nanosecond pulses in tissue, a multi-parametric analysis is carried out based on a finite element model of skin with a melanoma tumor nipped by splint electrodes. The electric field ranges from 1 to 10kV/cm, the pulse width ranges from 50 to 500ns, and the frequency in the pulse bursts ranges between 100kHz and 1MHz. The total pulse length is 100μs, and the frequency of the pulse bursts is 1Hz. The simulated maximum temperature of the skin tumor is only 37.4℃ after 1s, and the thermal damage is negligible, where the pulse parameters are 5kV/cm, 500ns and 1MHz. The temperature and thermal damage of the melanoma tumor in the skin are simulated and calculated with different electric fields, different pulse widths and different frequencies. The relationship between the thermal effects on the tumor and the pulse parameters is researched, and pulse parameters for a tumor without thermal damage are ascertained. By measuring the temperature of melanoma tumors in nude mice in vivo, it shows that the change in experimental temperature of the tumors is consistent with the simulated average temperature.
[1] Davalos R V, Mir L M, Rubinsky B. Tissue ablation with irreversible electroporation[J]. Annals of Biomedical Engineering, 2005, 33(2): 223-231. [2] 董守龙, 姚陈果, 储贻道, 等. 不可逆电穿孔对兔组织阻抗的影响[J]. 高电压技术, 2015, 41(4): 1402-1408. Dong Shoulong, Yao Chenguo, Chu Yidao, et al. Influence of irreversible electroporation on tissues resistance of rabbit[J]. High Voltage Engineering, 2015, 41(4): 1402-1408. [3] Golberg A, Yarmush M L. Nonthermal irreversible electroporation: fundamentals, applications, and challenges[J]. IEEE Transactions on Bio-medical Engineering, 2013, 60(3): 707-714. [4] Schoenbach K H, Hargrave B, Joshi R P, et al. Bioelectric effects of intense nanosecond pulses[J]. IEEE Transactions on Dielectrics & Electrical Insu- lation, 2007, 14(5): 1088-1109. [5] 徐进, 米彦, 卞昌浩, 等. 高频纳秒脉冲电场作用下多细胞系统穿孔特性仿真[J]. 高电压技术, 2016, 42(8): 2577-2586. Xu Jin, Mi Yan, Bian Changhao, et al. Simulations on poration features in a multicellular system under high-frequency nanosecond pulsed electric fields[J]. High Voltage Engineering, 2016, 42(8): 2577-2586. [6] Miklavčič D, Pucihar G, Pavlovec M, et al. The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy[J]. Bioelectrochemistry, 2005, 65(2): 121-128. [7] Mi Yan, Rui Shaoqin, Li Chengxiang, et al. Multi- parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond- pulsed electric fields based on finite element simulation[J]. Medical & Biological Engineering & Computing, 2017, 55(7): 1109-1122. [8] Zupanic A, Ribaric S, Miklavcic D. Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electro- chemotherapy[J]. Neoplasma, 2007, 54(3): 246-250. [9] Arena C B, Sano M B, Rylander M N, et al. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses[J]. IEEE Transa- ctions on Bio-medical Engineering, 2011, 58(5): 1474-1482. [10] Bhonsle S P, Arena C B, Davalos R V. A feasibility study to mitigate tissue-tumor heterogeneity using high frequency bipolar electroporation pulses[C]//6th European Conference of the International Federation for Medical and Biological Engineering, 2015: 565-568. [11] Jiji L M, Weinbaum S, Lemons D E. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—Part II: model formulation and solution[J]. Journal of Biomechanical Engineering, 1984, 106(4): 331-341. [12] Lackovic I, Magjarević R, Miklavcic D. Analysis of tissue heating during electroporation based therapy: A 3D FEM model for a pair of needle electrodes[C]// 11th Mediterranean Conference on Medical and Biome- dical Engineering and Computing, 2007: 631-634. [13] Davalos R V, Garcia P A, Edd J F. Thermal aspects of irreversible electroporation[M]. Heidelberg: Springer Berlin, 2010. [14] 陈锐, 姚陈果, 李成祥, 等. 不可逆电穿孔时组织电导率变化对电场和温度的影响[J]. 高电压技术, 2014, 40(12): 3860-3866. Chen Rui, Yao Chenguo, Li Chengxiang, et al. Influence of changes in tissue electrical conductivity on electric field and temperature with irreversible electroporation[J]. High Voltage Engineering, 2014, 40(12): 3860-3866. [15] 胡冠中, 杨仕友, 李玉玲. 纳米磁流体肿瘤热疗系统温度场优化设计方法[J]. 电工技术学报, 2013, 28(增刊2): 194-199. Hu Guanzhong, Yang Shiyou, Li Yuling. Temperature field optimization of nano-magnetic fluid hyper- thermia device[J]. Transactions of China Electro- technical Society, 2013, 28(S2): 194-199. [16] 郭飞, 李成祥, 唐贤伦, 等. 冲激辐射天线实现皮秒脉冲电场在人体大脑模型中聚焦的研究[J]. 电工技术学报, 2016, 31(3): 195-202. Guo Fei, Li Chengxiang, Tang Xianlun, et al. Focusing of picosecond pulsed electric fields in human brain model with impulse radiating antenna[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 195-202. [17] Tropea B I, Lee R C. Thermal injury kinetics in electrical trauma[J]. Journal of Biomechanical Engin- eering, 1992, 114(2): 241-250. [18] Jr H F. Studies of thermal injury: the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury[J]. Archives of Pathology, 1947, 43(5): 489-502. [19] Pearce J A. Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose[C]// Proceedings of SPIE-the International Society for Optical Engineering, 2009: 718104. [20] Stoll A M, Greene L C. Relationship between pain and tissue damage due to thermal radiation[J]. Journal of Applied Physiology, 1959, 14(3): 373-382. [21] 李小霞. 激光照射下生物组织热效应的数值分析与实验研究[D]. 天津: 天津大学, 2004. [22] Becker S. Transport modeling of skin electroporation and the thermal behavior of the stratum corneum[J]. International Journal of Thermal Sciences, 2012, 54(4): 48-61. [23] Zorec B, Becker S, Reberšek M, et al. Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses[J]. International Journal of Pharma- ceutics, 2013, 457(1): 214-223. [24] Jiang S C, Ma N, Li H J, et al. Effects of thermal properties and geometrical dimensions on skin burn injuries[J]. Burns, 2002, 28(8): 713-717. [25] Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1998, 85(1): 5-34. [26] Jamil M, Ng E Y K. To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective[J]. Journal of Thermal Biology, 2013, 38(5): 272-279. [27] Lü Y G, Deng Z S, Liu J. 3-D numerical study on the induced heating effects of embedded micro/ nanoparticles on human body subject to external medical electromagnetic field[J]. IEEE Transactions on Nanobioscience, 2005, 4(4): 284-294. [28] 米彦, 张晏源, 储贻道, 等. 基于非平衡Blumlein型多层微带传输线的高压纳秒脉冲发生器[J]. 电工技术学报, 2015, 30(11): 100-109. Mi Yan, Zhang Yanyuan, Chu Yidao, et al. High- voltage nanosecond pulse generator based on non- balanced blumlein type multilayered microstrip transmission line[J]. Transactions of China Electro- technical Society, 2015, 30(11): 100-109. [29] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24): 35-44. Dong Shoulong, Yao Chenguo, Yang Nan. The develop- ment of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 35-44.