A Power Distribution Control Strategy of Hybrid Energy Storage System in Hybrid Electric Vehicles
Wang Qi1, Sun Yukun2, Luo Yinsheng1
1. School of Electrical & Information Engineering Jiangsu University of TechnologyChangzhou 213001 China; 2. School of Electric Power Engineering Nanjing University of Technology Nanjing 211167 China
Abstract:This paper studied a power distribution control strategy of hybrid energy storage system (HESS) in hybrid electric vehicles (HEV). In HESS, battery is as a main power source and an ultra-capacitor (UC) is as an auxiliary power source. Regarding the power stage of energy conversion, a boost converter is connected with the main source and a buck-boost converter is connected with the auxiliary source. The objectives of the control strategy are as follows: ① stabilize DC bus voltage regulations, ② perfectly trace the current reference of super capacitor, ③ achieve asymptotic stability of the closed loop system. The HESS and control strategy are modelled and simulated under the Matlab Advisor simulation environment, and a prototype of HESS is also built. The results show that the designed control strategy meets all the objectives. It can make full use of the advantages of battery and UC.
王琪, 孙玉坤, 罗印升. 混合动力电动汽车的复合电源功率分配控制策略[J]. 电工技术学报, 2017, 32(18): 143-151.
Wang Qi, Sun Yukun, Luo Yinsheng. A Power Distribution Control Strategy of Hybrid Energy Storage System in Hybrid Electric Vehicles. Transactions of China Electrotechnical Society, 2017, 32(18): 143-151.
[1] Chan C C. The state of the art of electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 704-718. [2] Emadi A, Rajashekara K, Williamson S S, et al. Topological overview of hybrid electric and fuel cell vehicular power system architectures and configure- ations[J]. IEEE Transaction on Vehicular Technology, 2005, 54(3): 763-770. [3] Boettner D D, Paganelli G, Guezennec Y G, et al. Proton exchange membrane fuel cell system model for automotive vehicle simulation and control[J]. Journal of Energy Resource Technology, 2002, 124(1): 129. [4] Khaligh A, Li Zhihao. Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid Electric, fuel cell, and plug-in hybrid electric vehicles: state of the art[J]. IEEE Transactions on Vehicular Technology, 2010, 58(6): 2806-2814. [5] Rotenberg D, Vahidi A, Kolmanovsky I. Ultracapa- citor assisted power trains: modeling, control, sizing, and the impact on fuel economy[J]. IEEE Transaction on Control System Technology, 2011, 19(3): 576-589. [6] Samosir A S, Yatim A H M. Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system[J]. IEEE Transaction on Industrial Electronics, 2010, 57(10): 3468-3473. [7] 于海芳. 混合动力汽车复合储能系统参数匹配与控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2010 [8] Burke A, Millers M. Update of UC technologies and hybrid vehicles applications: passenger cars and buses[C]//University of California-Davis, EVS-18, Berlin, 2001: 23-29. [9] 王琪, 孙玉坤. 一种混合动力汽车复合电源能量管理系统控制策略与优化设计方法研究[J]. 中国电机工程学报, 2014, 34(增刊1): 195-203. Wang Qi, Sun Yukun. Research on the control strategy and optimization of energy management system of hybrid energy storage in a hybrid electric vehicle[J]. Proceedings of the CSEE, 2014, 34(S1): 195-203. [10] Awerbuchand J J, Sullivan C R. Control of ultracapacitor- battery hybrid power source for vehicular applica- tions[C]//IEEE Energy 2030 Conference, Atlanta, GA, USA, 2008, doi:10.1109/ENERGY.2008.4781003. [11] 周美兰, 赵立萍. 电动汽车复合储能系统的能量控制策略与仿真[J]. 哈尔滨理工大学学报, 2016, 21(3): 8-13. Zhou Meilan, Zhao Liping. Energy management strategy design and simulation for electric vehicles compound energy storage system[J]. Journal of Harin University of Science and Technology, 2016, 21(3): 8-13. [12] 高建平, 葛坚, 赵金宝, 等. 复合电源系统功率分配策略研究[J]. 西安交通大学学报, 2015, 49(7): 17-24. Gao Jianping, Ge Jian, Zhao Jinbao, et al. Power allocation strategy for hybrid power system[J]. Journal of Xi’an Jiaotong University, 2015, 49(7): 17-24. [13] Thounthong P, Rael S, Davat B. Control strategy of fuel cell and supercapacitors association for a distributed generation system[J]. Transaction on Industrial Electronics, 2007, 54(6): 3225-3233. [14] Nelms R M, Cahela D R, Tatarchuk B J. Modeling double-layer capacitor behavior using ladder circuits[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 430-438. [15] Fadil H El, Giri F. Sliding mode control of fuel cell and supercapacitor hybrid energy storage system[J]. IFAC Proceedings Volumes, 2012, 45(21): 669-674. [16] 田春光, 田利, 李德鑫, 等. 基于混合储能系统跟踪光伏发电输出功率的控制策略[J]. 电工技术学报, 2016, 31(14): 75-83. Tian Chunguang, Tian Li, Li Dexin, et al. Control strategy for tracking the output power of photovoltaic power generation based on hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 75-83. [17] 张明锐, 李元浩, 欧阳丽, 等. 基于混杂系统DC- DC变换器的永磁风电并网系统直流母线电压稳定控制[J]. 电工技术学报, 2015, 30(4): 62-69. Zhang Mingrui, Li Yuanhao, Ouyang Li, et al. DC bus voltage stability control of DC-DC converter in the permanent magnet wind power grid-connected system based on hybrid system[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 62-69. [18] Fadil H El, Girt F, Ouadi H. Accounting for coils magnetic saturation in controlling DC-DC power converters[C]//IEEE International Conference on Control Applications (CCA), 2006: 3163-3168. [19] Fadil H El, Giri F, Guerrero J M. Lyapunov based control of hybrid energy storage system in electric vehicles[C]//American Control Conference (ACC), Montréal, Canada, 2012: 5005-5010. [20] 王琪, 孙玉坤, 倪福银, 等. 一种混合动力电动汽车电池荷电状态预测的新方法[J]. 电工技术学报, 2016, 31(9): 189-196. Wang Qi, Sun Yukun, Ni Fuyin, et al. A new method of battery state of charge prediction in the hybrid electric vehicle[J]. Transactions of China Electro- technical Society, 2016, 31(9): 189-196.