Abstract:The Z-source converter features stepping up/down in single stage, none dead-time and high reliability, which attaches great significance to electric vehicles (EV). An ultra capacitor-battery hybrid energy storage system (HESS) for electric vehicles is proposed based on bi-directional Z-source topology. The HESS is incorporated in the traction inverter system, and the DC-DC converter for the battery is omitted. The steady operation principles for power distribution in HESS modes are analyzed. A frequency dividing coordinated control is then employed to enhance the system dynamic response and the seamless switching. Estimation methods for the battery peak current are also investigated, to avoid the impacts of short-time inrush current on battery. Finally, the steady performance and transient response are verified by simulation and experimental results.
胡斯登, 梁梓鹏, 范栋琦, 周晶, 何湘宁. 基于Z源变换器的电动汽车超级电容-电池混合储能系统[J]. 电工技术学报, 2017, 32(8): 247-255.
Hu Sideng, Liang Zipeng, Fan Dongqi, Zhou Jing, He Xiangning. Implementation of Z-Source Converter for Ultracapacitor-Battery Hybrid Energy Storage System for Electric Vehicle. Transactions of China Electrotechnical Society, 2017, 32(8): 247-255.
[1] Xiang C, Wang Y, Hu S, et al. A new topology and control strategy for a hybrid battery-ultracapacitor energy storage system[J]. Energies, 2014, 7(5): 2874- 2896. [2] Emadi A, Williamson S, Khaligh A. Power elec- tronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems[J]. IEEE Transactions on Power Electronics, 2006, 21(3): 567-577. [3] 张国驹, 唐西胜, 齐智平. 超级电容器与蓄电池混合储能系统在微网中的应用[J]. 电力系统自动化, 2010, 34(12): 85-89. Zhang Guoju, Tang Xisheng, Qi Zhiping. Application of hybrid energy storage system of super-capacitors and batteries in a microgrid[J]. Automation of Electric Power Systems, 2010, 34(12): 85-89. [4] Cao J, Emadi A. A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug- in hybrid electric vehicles[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 122-132. [5] 丁明, 林根德, 陈自年, 等. 一种适用于混合储能系统的控制策略[J]. 中国电机工程学报, 2012, 32(7): 1-6. Ding Ming, Lin Gende, Chen Zinian, et al. A control strategy for hybrid energy storage systems[J]. Pro- ceedings of the CSEE, 2012, 32(7): 1-6. [6] 郭力, 富晓鹏, 李霞林, 等. 独立交流微网中电池储能与柴油发电机的协调控制[J]. 中国电机工程学报, 2012, 32(25): 70-78. Guo Li, Fu Xiaopeng, Li Xialin, et al. Coordinated control of battery storage and diesel generators in isolated AC microgrid systems[J]. Proceedings of the CSEE, 2012, 32(25): 70-78. [7] 唐西胜, 邓卫, 齐智平. 基于储能的微网并网/离网无缝切换技术[J]. 电工技术学报, 2011, 26(增刊1): 279-284. Tang Xisheng, Deng Wei, Qi Zhiping. Research on grid-connected/islanded seamless transition of micro- grid based on energy storage[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 279-284. [8] Emadi A, Rajashekara K, Williamson S, et al. Topological overview of hybrid electric and fuel cell vehicular power systemarchitectures and configu- rations[J]. IEEE Transactions on Vehicular Techno- logy, 2005, 54(3): 763-770. [9] Ding Z, Yang C, Zhang Z, et al. A novel soft- switching multiport bidirectional DC-DC converter for hybrid energy storage system[J]. IEEE Transa- ctions on Power Electronics, 2014, 29(4): 1595-1609. [10] Lukic S, Cao J, Bansal R, et al. Energy storage systems for automotive applications[J]. IEEE Transa- ctions on Industrial Electronics, 2008, 55(6): 2258- 2267. [11] Chia Y, Lee L, Shafiabady N, et al. A load predictive energy management system for supercapacitor- battery hybrid energy storage system in solar appli- cation using the support vector machine[J]. Applied Energy, 2015, 137: 588-602. [12] Lukic S, Wirasingha S, Rodriguez F, et al. Power management of an ultra-capacitor/battery hybrid energy storage system in an HEV[C]//IEEE Vehicle Power and Propulsion Conference, 2006: 1-6. [13] Siwakoti Y, Peng F, Blaabjerg F, et al. Impedance- source networks for electric power conversion part II: review of control and modulation techniques[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 1887-1906. [14] Siwakoti Y, Peng F, Blaabjerg F, et al. Impedance- source networks for electric power conversion part I: a topological review[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 699-716. [15] Peng F, Yuan X, Fang X, et al. Z-source inverter for adjustable speed drives[J]. IEEE Transactions on Power Electronics, 2003, 1(2): 33-35. [16] Shen M, Joseph A, Wang J, et al. Comparison of traditional inverters and Z-source inverter for fuel cell vehicles[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 1453-1463. [17] Peng F, Shen M, Holland K. Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles[J]. IEEE Transactions on Power Electronics, 2007, 22(3): 1054-1061. [18] Cai J, Zhong Q. An asymmetrical ΓZ-source hybrid power converter with space vector pulse-width modulation[C]//IEEE Energy Conversion Congress and Exposition, 2014: 344-349. [19] Peng F, Joseph A, Wang J, et al. Z-source inverter for motor drives[J]. IEEE Transactions on Power Elec- tronics, 2005, 20(4): 857-863. [20] Omar E, Joeri V, Philippe L. Control of a bidirectional Z-source inverter for electric vehicle applications in different operation modes[J]. Journal of Power Electronics, 2011, 11(2): 120-131. [21] Liang Zipeng, Hu Sideng, Hu Senjun, et al. Estimation and control of battery charging current for the asymmetrical Z-source topology in the HESS application[C]//IEEE Energy Conversion Congress and Exposition, 2015: 6180-6186. [22] 李武华, 徐驰, 禹红斌, 等. 直流微网系统中混合储能分频协调控制策略研究[J]. 电工技术学报, 2016, 31(14): 84-92. Li Wuhua, Xu Chi, Yu Hongbin, et al. Frequency dividing coordinated control strategy for hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 84-92. [23] Gu Y, Li W, He X. Frequency-coordinating virtual impedance for autonomous power management of DC microgrid[J]. IEEE Transactions on Power Elec- tronics, 2015, 30(4): 2328-2337.