Online Detection of DC-Link Capacitance Parameters of Single-Phase Boost Power Factor Correction Converter Based on Improved Harmonic Injection
Lu Weiguo1, Cao Qi1, Zhang Tingting1, Luo Tianzhu2, Zhang Huaiqing1
1. State Key Laboratory of Power Transmission Equipment Technology School of Electrical Engineering Chongqing University Chongqing 400044 China; 2. China Electronics Chip Technology Research Institute Chongqing 400060 China
Abstract:Boost PFC converter is commonly utilized in rectifier circuits due to its ability to achieve a high power factor and low input current distortion. For the single-phase boost PFC converter, large-capacity and low-priced aluminum electrolytic capacitors (AECs) are typically employed to balance the instantaneous power deviation between the input and the output. However, the failure-prone nature of electrolytic capacitors may result in system instability or even collapse. Therefore, the real-time detection of electrolytic capacitor status information, assessment of its service life, and timely replacement of the soon-to-be-failed electrolytic capacitor can provide an important technical guarantee for the reliability of PFC power supply operation. This paper proposes an improved "zero-crossing removal interval" harmonic injection method for online detection of capacitance parameters to solve current zero-crossing distortion caused by harmonic injection. Additionally, based on the harmonic response of the bus voltage, the harmonic capacitor current reconstruction is achieved, and a model for calculating the CR and RE parameters without capacitor current sampling is constructed. Firstly, the AC and DC input-output power action characteristics of the Boost PFC converter are fully utilized, i.e., the high harmonic current injection of the current control loop produces a high harmonic voltage splitting phenomenon on the output voltage. The two split harmonic voltage signals are employed to reconstruct the capacitor current; the capacitor's low-frequency impedance model is used to estimate CR; a mid-frequency domain harmonic capacitor parameter computation model is established to estimate the RE. In addition, the high harmonic current injection in the current loop inevitably results in an asymmetric zero-crossing distortion of the input current, directly affecting the accuracy of the capacitance parameter computation model. Consequently, the zero-crossing removal interval harmonic current injection method is employed to solve zero-crossing distortion caused by inter-area injection. The improved “zero-crossing removal interval” method avoids the reconstructed high-order capacitor current calculation error, enhancing CR and RE accuracy. Eighteen types of capacitor conditions are selected for simulation calculation, and 48 W/72 W/144 W Boost PFC experimental prototypes are established. The proposed detection method is verified under an input voltage of 60 V, a switching frequency of 100 kHz, and an output voltage of 120 V. The results demonstrated that the method exhibits high detection accuracy under symmetrical injection conditions with a 10% zero-crossing removal interval, a 10 V injection amplitude, and a 650 Hz frequency. Furthermore, the improved “zero-crossing removal interval” method can achieve parameter detection error within 5% under different loads (100 Ω, 200 Ω, and 300 Ω) and capacitor conditions (196 mΩ/412 μF and 216 mΩ/617 μF), regardless of light or heavy loads. This paper presents the following conclusions. (1) The proposed method considers the impact of current on distortion caused by harmonic injection. A “zero-crossing removal interval” harmonic injection method improves the accuracy of capacitance parameter detection. (2) In the “zero-crossing removal interval” method, the capacitor current is obtained through algorithmic reconstruction, which avoids high-precision capacitor current sampling. The harmonic injection is achieved by the control algorithm without additional hardware equipment. (3) The proposed capacitance parameter calculation model is derived based on the AC-DC power balance, making it straightforward to extend to similar AC-DC converters.
卢伟国, 曹琪, 张婷婷, 罗天柱, 张淮清. 基于改进谐波注入的单相Boost功率因数校正变换器直流母线电容参数在线检测[J]. 电工技术学报, 2025, 40(8): 2601-2614.
Lu Weiguo, Cao Qi, Zhang Tingting, Luo Tianzhu, Zhang Huaiqing. Online Detection of DC-Link Capacitance Parameters of Single-Phase Boost Power Factor Correction Converter Based on Improved Harmonic Injection. Transactions of China Electrotechnical Society, 2025, 40(8): 2601-2614.
[1] 王议锋, 王忠杰, 陈博, 等. 基于耦合电感的交错Boost变换器性能优化[J]. 电工技术学报, 2022, 37(8): 2097-2106. Wang Yifeng, Wang Zhongjie, Chen Bo, et al.Performance optimization of interleaved Boost based on coupled inductors[J]. Transactions of China Elec-trotechnical Society, 2022, 37(8): 2097-2106. [2] 林通, 江平, 姚佳. 一种基于耦合电感的零电流纹波功率因数校正变换器[J]. 电工技术学报, 2022, 37(18): 4732-4744. Lin Tong, Jiang Ping, Yao Jia.A zero current ripple tapped inductor power factor correction converter[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4732-4744. [3] 王立乔, 陈建医, 程超然, 等. 单级单相无电解电容Buck-Boost逆变器[J]. 电工技术学报, 2023, 38(24): 6768-6781. Wang Liqiao, Chen Jianyi, Cheng Chaoran, et al.A single-stage single-phase Buck-Boost inverter without electrolytic capacitor[J]. Transactions of China Elec-trotechnical Society, 2023, 38(24): 6768-6781. [4] 陶星澳, 王丰, 卓放. 部分功率直流变换器研究综述[J]. 电工技术学报, 2024, 39(10): 3021-3037. Tao Xing’ao, Wang Feng, Zhuo Fang.Review of partial power DC converter research[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3021-3037. [5] Lu Weiguo, Lang Shuang, Zhou Luowei, et al.Improvement of stability and power factor in PCM controlled boost PFC converter with hybrid dynamic compensation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(1): 320-328. [6] 樊靖轩, 施佳楠, 徐子梁, 等. 基于GaN的开关线性复合高速随动脉冲负载直流变换器[J]. 电工技术学报, 2024, 39(6): 1818-1829. Fan Jingxuan, Shi Jianan, Xu Ziliang, et al.GaN-based switched linear composite high-speed follow-up pulse load DC converter[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1818-1829. [7] 皇金锋, 李林鸿, 任舒欣, 等. 考虑滤波电容等效串联电阻的输出本质安全型Buck-Boost变换器分析与设计[J]. 电工技术学报, 2021, 36(8): 1658-1670. Huang Jinfeng, Li Linhong, Ren Shuxin, et al.Analysis and design of an intrinsically safe Buck-Boost converter on considering of the filter capacitor with equivalent series resistance[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1658-1670. [8] Soliman H, Wang Huai, Blaabjerg F.A review of the condition monitoring of capacitors in power elec-tronic converters[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 4976-4989. [9] 罗天柱. 单相Boost PFC变换器的直流母线电容参数检测方法研究[D]. 重庆: 重庆大学, 2022. Luo Tianzhu.Research on DC bus capacitance parameter detection method of single-phase Boost PFC converter[D]. Chongqing: Chongqing University, 2022. [10] Pu Xingsi, Nguyen T H, Lee D C, et al.Fault diagnosis of DC-link capacitors in three-phase AC/DC PWM converters by online estimation of equivalent series resistance[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4118-4127. [11] Amaral A M R, Marques Cardoso A J. Using Newton-raphson method to estimate the condition of aluminum electrolytic capacitors[C]//2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007: 827-832. [12] Tsang K M, Chan W L.Simple method for measuring the equivalent series inductance and resistance of electrolytic capacitors[J]. IET Power Electronics, 2010, 3(4): 465. [13] Amaral A M R, Marques Cardoso A J. A simple offline technique for evaluating the condition of aluminum-electrolytic-capacitors[J]. IEEE Transa-ctions on Industrial Electronics, 2009, 56(8): 3230-3237. [14] Amaral A M R, Marques Cardoso A J. An automatic technique to obtain the equivalent circuit of aluminum electrolytic capacitors[C]//2008 34th Annual Con-ference of IEEE Industrial Electronics, Orlando, FL, USA, 2008: 539-544. [15] Yao Kai, Tang Weijie, Bi Xiaopeng, et al.An online monitoring scheme of DC-link capacitor’s ESR and C for a Boost PFC converter[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5944-5951. [16] 罗丹, 陈民铀, 赖伟, 等. 基于Haar小波变换重构开关序列的MMC子模块电容值在线监测方法[J]. 电工技术学报, 2022, 37(20): 5278-5289. Luo Dan, Chen Minyou, Lai Wei, et al.Online monitoring method for sub-module capacitance in modular multilevel converter based on Haar wavelet transform reconstruction switch sequence[J]. Transa-ctions of China Electrotechnical Society, 2022, 37(20): 5278-5289. [17] 辛熙锴, 马柯, 蔡旭. 工频周期四点电压采样的MMC子模块电容值在线监测方法[J]. 中国电机工程学报, 2021, 41(11): 3896-3904. Xin Xikai, Ma Ke, Cai Xu.Online monitoring for sub-module capacitance in modular multilevel con-verter with four sampling points of capacitor voltage[J]. Proceedings of the CSEE, 2021, 41(11): 3896-3904. [18] 林晓婉, 代锋, 刘沈全, 等. 含LCC-HVDC的交直流混联电网统一谐波状态估计方法[J]. 电力系统自动化, 2022, 46(13): 94-103. Lin Xiaowan, Dai Feng, Liu Shenquan, et al.Unified harmonic state estimation method for AC/DC hybrid power grid with LCC-HVDC[J]. Automation of Electric Power Systems, 2022, 46(13): 94-103. [19] Laadjal K, Sahraoui M, Cardoso A J M, et al. Online estimation of aluminum electrolytic-capacitor para-meters using a modified prony’s method[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 4764-4774. [20] 蒋兴良, 周文轩, 董莉娜, 等. 基于旋转圆柱三电极阵列的覆冰测量方法[J]. 电工技术学报, 2024, 39(5): 1524-1535. Jiang Xingliang, Zhou Wenxuan, Dong Lina, et al.Ice coating measurement method based on rotating cylindrical three-electrode array[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1524-1535. [21] Zhao Zhaoyang, Lu Weiguo, Davari P, et al.An online parameters monitoring method for output capacitor of buck converter based on large-signal load transient trajectory analysis[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4004-4015. [22] 孙鹏菊, 龚灿, 杜雄, 等. 一种大功率交流变流器直流母线电容等效串联电阻的在线监测方法[J]. 中国电机工程学报, 2017, 37(17): 5134-5142, 5233. Sun Pengju, Gong Can, Du Xiong, et al.An online monitoring scheme of equivalent series resistance for DC-link capacitor of high-power AC converter[J]. Proceedings of the CSEE, 2017, 37(17): 5134-5142, 5233. [23] Lu Weiguo, Lu Xuemei, Han Jinxin, et al.Online estimation of ESR for DC-link capacitor of Boost PFC converter using wavelet transform based time-frequency analysis method[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7755-7764. [24] Ahmeid M, Armstrong M, Gadoue S, et al.Real-time parameter estimation of DC-DC converters using a self-tuned Kalman filter[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5666-5674. [25] Li B X, Low K S.Low sampling rate online para-meters monitoring of DC-DC converters for predictive-maintenance using biogeography-based optimi-zation[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 2870-2879. [26] Sun Pengju, Gong Can, Du Xiong, et al.Online condition monitoring for both IGBT module and DC-link capacitor of power converter based on short-circuit current simultaneously[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3662-3671. [27] Kim M, Sul S K, Lee J.Condition monitoring of DC-link capacitors in drive system for electric vehicles[C]//2012 IEEE Vehicle Power and Pro-pulsion Conference, Seoul, Korea (South), 2012: 633-637. [28] Gupta Y, Ahmad M W, Narale S, et al.Health estimation of individual capacitors in a bank with reduced sensor requirements[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7250-7259. [29] Ahmad M W, Agarwal N, Kumar P N, et al.Low-frequency impedance monitoring and corresponding failure criteria for aluminum electrolytic capacitors[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5657-5666. [30] Meng Jinlei, Chen E X, Ge S J.Online E-cap condition monitoring method based on state obser-ver[C]//2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 2018: 1-6. [31] Sun Jian.On the zero-crossing distortion in single-phase PFC converters[J]. IEEE Transactions on Power Electronics, 2004, 19(3): 685-692.