Hybrid Mechanism-Data-Driven Diagnosis of Rotating Diode Fault in Multiphase Annular Brushless Excitation Systems
Cai Yuang1, Hao Liangliang1, Zhou Yanzhen2, Duan Xianwen3, Wang Guang4
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. Department of Electrical Engineering Tsinghua University Beijing 100084 China; 3. China Nuclear Power Operations Co. Ltd Shenzhen 518172 China; 4. Nanjing NR Electric Co. Ltd Nanjing 211102 China
Abstract:The rotating rectifier is the key part of multiphase annular brushless excitation systems. Nevertheless, the rectifiers often experience faults caused by diode failures, which brings security risks in practice. Accurately diagnosing faults in the rotating rectifier is pivotal for ensuring the safe operation of multiphase annular brushless excitation systems. However, the types of rotating rectifier faults are diverse, and the characteristics of different faults are inherently weak. Traditional mechanism-driven diagnostic schemes offer interpretability but often struggle with precise fault diagnosis. New data-driven diagnostic schemes exhibit speed and accuracy but encounter challenges in training and debugging in practical applications. This paper proposes a hybrid mechanism-data-driven diagnostic scheme for rotating rectifier faults. Based on the fault mechanism, the frequency domain characteristics of the excitation current after the fault are derived, and the fault characteristic patterns are summarized. Then, thresholds of the mechanism diagnosis model are calculated using finite element simulation data. Extracting the frequency domain characteristics of the excitation current allows the fault mechanism to be clearly described, thus providing a solid foundation for subsequent fault diagnosis. The current waveform under normal operation and different fault conditions can be simulated by adjusting the models, which allows for determining thresholds for various operating conditions. Then, the fast dynamic time warping (Fast-DTW) algorithm is introduced to calculate the similarity of excitation current time-domain waveforms, subsequently forming a data-driven model combined with the k-nearest neighbors (kNN) classifier. The fast-DTW algorithm can align waveforms of different time lengths and start points to capture subtle differences between waveforms. By combining the fast-DTW algorithm with the kNN classifier, the data-driven model can realize the diagnosis of rotating rectifier faults. Mechanism-driven and data-driven diagnostic schemes are integrated based on ensemble learning principles. Ensemble learning significantly enhances the overall performance of the model by combining the results of multiple learners. Five mechanism-driven and five data-driven models are established to obtain a final diagnostic result based on the absolute majority voting method. The hybrid diagnostic scheme exhibits the advantages of mechanism-driven and data-driven models, effectively overcoming the limitations of a single-driven model. Finally, the verification of prototype experiments indicates that the hybrid scheme’s diagnostic accuracy reaches 100%, significantly surpassing single-driven models. Establishing diagnostic models requires offline simulation data, reducing training difficulty and improving practicality on-site. The hybrid scheme maintains a reasonable diagnostic speed while ensuring high accuracy. In conclusion, the proposed hybrid mechanism-data-driven fault diagnosis scheme combines mechanism analysis and data-driven methods to enhance the accuracy and robustness of fault diagnosis, demonstrating excellent test performance in prototype experiments. The diagnostic approach based on the time-frequency characteristics of the excitation current demonstrates excellent interpretability, achieving accurate fault diagnosis solely through training with simulation data.
[1] 郝亮亮, 张扬, 屈天龙, 等. 多相多边形无刷励磁机及旋转整流系统的运行状态分析[J]. 电力自动化设备, 2020, 40(4): 159-165. Hao Liangliang, Zhang Yang, Qu Tianlong, et al.Operating state analysis of multi-phase angular brushless exciter and rotating rectifier system[J]. Electric Power Automation Equipment, 2020, 40(4): 159-165. [2] 李小宁, 高朝晖, 王爽, 等. 飞机主电源系统关键器件健康状态评估研究[J]. 电气工程学报, 2023, 18(4): 188-198. Li Xiaoning, Gao Zhaohui, Wang Shuang, et al.Research on health assessment method of key components in aircraft main power system[J]. Journal of Electrical Engineering, 2023, 18(4): 188-198. [3] 朱威, 马伟明, 阳习党, 等. 基于电压波形相似度测量的十二相不控整流装置故障诊断[J]. 海军工程大学学报, 2018, 30(2): 49-54. Zhu Wei, Ma Weiming, Yang Xidang, et al.Fault diagnosis method of 12-phase uncontrolled rectifier based on volt waveform similarity measurement[J]. Journal of Naval University of Engineering, 2018, 30(2): 49-54. [4] Hao Liangliang, Chen Jianlin, He Li, et al.Modeling, analysis, and identification of armature winding interturn fault in multiphase brushless exciters[J]. IEEE Transactions on Power Electronics, 2023, 38(1): 1119-1131. [5] 刘念, 王贺新, 赵欣. 核电站无刷励磁系统的电枢电流谐波分析研究[J]. 四川电力技术, 2018, 41(1): 17-21. Liu Nian, Wang Hexin, Zhao Xin.Analysis on harmonic of armature current for brushless excitation system of nuclear plant[J]. Sichuan Electric Power Technology, 2018, 41(1): 17-21. [6] Pang Ji, Liu Weiguo, Wei Zhihuang, et al.Online diode fault detection in rotating rectifier of the brushless synchronous starter generator[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6943-6951. [7] 郝亮亮, 陈建林, 段贤稳, 等. 核电多相无刷励磁系统中旋转整流器不同开路故障模式的特征分析及诊断[J]. 电工技术学报, 2023, 38(18): 4932-4946. Hao Liangliang, Chen Jianlin, Duan Xianwen, et al.Analysis and diagnosis of different open-circuit fault modes of rotating rectifier in multi-phase brushless excitation system at nuclear power plant[J]. Transa-ctions of China Electrotechnical Society, 2023, 38(18): 4932-4946. [8] 郝亮亮, 李佳慧, 李洪学, 等. 核电多相角形无刷励磁系统旋转二极管开路故障特征分析[J]. 电力系统自动化, 2019, 43(11): 112-120. Hao Liangliang, Li Jiahui, Li Hongxue, et al.Characteristic analysis of open-circuit fault of rotating diode in nuclear multi-phase angular brushless excitation system[J]. Automation of Electric Power Systems, 2019, 43(11): 112-120. [9] 蔡波冲, 武玉才, 赵艳军. 基于定子电流谐波法的无刷励磁机旋转二极管开路故障检测[J]. 大电机技术, 2018(4): 61-65. Cai Bochong, Wu Yucai, Zhao Yanjun.The detection of open-circuit fault of rotary diode in brushless exciter using stator current harmonic method[J]. Large Electric Machine and Hydraulic Turbine, 2018(4): 61-65. [10] Chen Jianlin, Hao Liangliang, Li Huazhong, et al.Time-frequency characteristics analysis and diagnosis of rotating rectifier faults in multiphase annular brushless system[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3233-3244. [11] 孙宇光, 杜威, 桂林, 等. 用于多相无刷励磁机开路与短路故障检测的磁极探测线圈设计[J]. 电工技术学报, 2022, 37(14): 3542-3554. Sun Yuguang, Du Wei, Gui Lin, et al.Design of pole detection coils for open-circuit and short-circuit faults in multiphase brushless exciter[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3542-3554. [12] Wu Yucai, Cai Bochong, Ma Qianqian.Research on an online diagnosis for rotating diode faults in three-phase brushless exciter with two coils[J]. IET Electric Power Applications, 2019, 13(1): 101-109. [13] Mohammad-Alikhani A, Rahnama M, Vahedi A.Neighbors class solidarity feature selection for fault diagnosis of brushless generator using thermal imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6221-6227. [14] 胡启昊, 郝亮亮, 周艳真, 等. 基于励磁电流时序特征的核电多相旋转整流器二极管开路故障诊断[J]. 中国电机工程学报, 2023, 43(20): 8082-8094. Hu Qihao, Hao Liangliang, Zhou Yanzhen, et al.Diode open-circuit fault diagnosis of nuclear multi-phase rotating rectifier based on timing features of field current[J]. Proceedings of the CSEE, 2023, 43(20): 8082-8094. [15] 梁郑秋, 郝亮亮, 周艳真, 等. 基于卷积神经网络的核电多相无刷励磁系统旋转整流器故障诊断[J]. 电工技术学报, 2023, 38(20): 5458-5472. Liang Zhengqiu, Hao Liangliang, Zhou Yanzhen, et al.Fault diagnosis of rotating rectifier in nuclear multi-phase brushless excitation system based on con-volutional neural network[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5458-5472. [16] Cai Yuang, Hao Liangliang, Zhou Yanzhen, et al.Rotating rectifier fault diagnosis of nuclear multiphase brushless excitation system based on DTW metric and kNN classifier[J]. IEEE Transa-ctions on Power Electronics, 2023, 38(8): 10329-10343. [17] 崔江, 唐军祥, 张卓然, 等. 基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J]. 中国电机工程学报, 2018, 38(8): 2458-2466, 2555. Cui Jiang, Tang Junxiang, Zhang Zhuoran, et al.Fast fault classification method research of aircraft generator rotating rectifier based on extreme learning machine[J]. Proceedings of the CSEE, 2018, 38(8): 2458-2466, 2555. [18] 崔江, 郭瑞东, 张卓然, 等. 基于改进DBN的发电机旋转整流器故障特征提取技术[J]. 中国电机工程学报, 2020, 40(7): 2369-2376. Cui Jiang, Guo Ruidong, Zhang Zhuoran, et al.Generator rotating rectifier fault feature extraction technique based on improved DBN[J]. Proceedings of the CSEE, 2020, 40(7): 2369-2376. [19] Hutson M.Has artificial intelligence become alchemy?[J]. Science, 2018, 360(6388): 478. [20] 时光, 陈翼喆, 李莹, 等. 基于先验知识的弓网接触电阻预测模型精度提升方法[J]. 电工技术学报, 2024, 39(14): 4535-4546. Shi Guang, Chen Yizhe, Li Ying, et al.Accuracy improvement method of pantograph contact resistance prediction model based on prior knowledge[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4535-4546. [21] 王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46(11): 67-74. Wang Biao, Lü Yang, Chen Zhong, et al.Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46(11): 67-74. [22] 刘萍, 李泽文, 蔡雨思, 等. 基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法[J]. 电工技术学报, 2024, 39(10): 3232-3243. Liu Ping, Li Zewen, Cai Yusi, et al.Joint estimation method of SOC and SOH based on fusion of equivalent circuit model and data-driven model[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3232-3243. [23] Cai Yuang, Hao Liangliang, Chen Jianlin, et al.Analysis and monitoring of the fuse conditions in nuclear power multiphase brushless excitation system[J]. IEEE Transactions on Industrial Infor-matics, 2024, 20(6): 8559-8571. [24] Danielsson P E.Euclidean distance mapping[J]. Computer Graphics and Image Processing, 1980, 14(3): 227-248. [25] 姬文江, 左元, 黑新宏, 等. 基于FastDTW的道岔故障智能诊断方法[J]. 模式识别与人工智能, 2020, 33(11): 1013-1022. Ji Wenjiang, Zuo Yuan, Hei Xinhong, et al.An intelligent fault diagnosis method based on FastDTW for railway turnout[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(11): 1013-1022. [26] 李荣陆, 胡运发. 基于密度的kNN文本分类器训练样本裁剪方法[J]. 计算机研究与发展, 2004, 41(4): 539-545. Li Ronglu, Hu Yunfa.A density-based method for reducing the amount of training data in kNN text classification[J]. Journal of Computer Research and Development, 2004, 41(4): 539-545. [27] 张剑, 崔明建, 何怡刚. 结合数据驱动与物理模型的主动配电网双时间尺度电压协调优化控制[J]. 电工技术学报, 2024, 39(5): 1327-1339. Zhang Jian, Cui Mingjian, He Yigang.Dual timescales coordinated and optimal voltages control in distribution systems using data-driven and physical optimization[J]. Transactions of China Electro-technical Society, 2024, 39(5): 1327-1339. [28] Cui Langfu, Zhang Qingzhen, Shi Yan, et al.A method for satellite time series anomaly detection based on fast-DTW and improved-kNN[J]. Chinese Journal of Aeronautics, 2023, 36(2): 149-159. [29] Dietterich T G.Ensemble methods in machine learning[M]//Berlin, Heidelberg: Springer, 2000: 1-15.