Abstract:In servo systems, the bandwidth of the current loop is increased by raising the switching frequency. However, the dead-time nonlinearity of the voltage source inverter (VSI) intensifies with the increase of switching frequency, causing the deviation between the actual and the theoretical output voltage, resulting in serious distortion of the inverter output current waveform. The requirement of computational power constrains the implementation of high switching frequency control. Consequently, the dead-time nonlinearity compensation strategy should be more straightforward to decrease computational time, especially for high switching frequency applications. The amplitude increase is relatively modest at a low switching frequency but significantly surges at a high one, bringing on a severe degradation of the linear modulation region. It is an imperfect solution to compensate after the occurrence of dead-time, which unavoidably introduces compensation errors. Furthermore, the accurate solution of inverter nonlinear voltage error (INVE) under different currents represents a crucial aspect of achieving exact INVE compensation. Nevertheless, the existing methods are complex. This paper proposes a novel strategy that combines no-dead-time double modulation wave pulse-width modulation (PWM) and inverter nonlinearity compensation for analyzing the dead-time nonlinearity and the nonideal characteristics of the inverter on the output voltage error. Firstly, according to the continuous current characteristics of the anti-parallel diode, the drive vacancy area is added between the complementary drive pulses to avoid the introduction of dead time. Compared with the ideal space vector pulse width modulation (SVPWM), an auxiliary modulating wave is added. Depending on the current polarity, its amplitude is adjusted up or down from the original modulating waveform. The underlap periods are generated between the complementary drive pulse by contrasting the double-modulating and the triangular carrier waves. It is practical to avoid both the bridge arm shoot-through and the introduction of dead time. Most importantly, the actual output voltage of this method is identical to the optimal voltage, which directly eliminates the dead-time nonlinearity and removes the limitation of dead time on the output duty cycle at a high switching frequency. Moreover, the control signals of each switching device are obtained based on the comparison between the double-modulating and the carrier wave. No additional control loop calculations are required, while the generated PWM signals are symmetric about the carrier midpoint. Secondly, the inverter nonlinearity is equated to the INVE, which varies with the current. When the motor is at a standstill of ${{\theta }_{\text{e}}}={{0}^{\circ }}$, by injecting the ramp current signal into the direct axis and applying Kirchhoff's voltage law, the sum of INVE containing the nonlinear factor of the two-phase VSI is obtained. Finally, the relationship between the INVE and the current amplitude is calculated using the linear iterative interpolation approach, and the online compensation of the INVE is achieved. The results show that the proposed strategy can increase the linear modulation region of the output voltage, eliminate the output duty cycle limitation derived from the dead-time, and effectively suppress the current harmonic distortion phenomenon caused by the dead-time nonlinearity of high switching frequency inverters. In addition, the strategy is easy to implement without additional control loop calculations, which can be applied to servo drive control systems requiring high switching frequencies.
周国祥, 王邦继, 王梦轩, 许琨辉. 高频伺服系统逆变器死区非线性补偿策略[J]. 电工技术学报, 2025, 40(8): 2630-2642.
Zhou Guoxiang, Wang Bangji, Wang Mengxuan, Xu Kunhui. Dead-Time Nonlinearity Compensation Strategy for Inverter in High Frequency Servo Systems. Transactions of China Electrotechnical Society, 2025, 40(8): 2630-2642.
[1] Ren Ren, Zhang Fanghua, Liu Bo, et al.A closed-loop modulation scheme for duty cycle compensation of PWM voltage distortion at high switching frequency inverter[J]. IEEE Transactions on Industrial Elec-tronics, 2020, 67(2): 1475-1486. [2] Schubert M, Scharfenstein D, De Doncker R W. A novel online current-and voltage-sensor offset adaption scheme utilizing the effect of inverter voltage distortion[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6011-6017. [3] Wu Zhaoqian, Ding Kang, Yang Zhijian, et al.Analytical prediction and minimization of deadtime-related harmonics in permanent magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 7736-7746. [4] 周世超, 刘侃, 丁荣军, 等. 基于谐波分离的逆变器非线性因素直接提取和补偿方法[J]. 中国电机工程学报, 2021, 41(22): 7763-7771. Zhou Shichao, Liu Kan, Ding Rongjun, et al.Direct extraction and compensation of inverter nonlinearity based on harmonic separation[J]. Proceedings of the CSEE, 2021, 41(22): 7763-7771. [5] 杨帆, 赵希梅, 金鸿雁, 等. 基于广义比例积分观测器的永磁同步电机鲁棒谐振预测电流控制[J]. 电工技术学报, 2024, 39(10): 2995-3006. Yang Fan, Zhao Ximei, Jin Hongyan, et al.Robust resonant predictive current control of permanent magnet synchronous motor based on generalized proportional-integral observer[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 2995-3006. [6] 王高林, 李卓敏, 詹瀚林, 等. 考虑逆变器非线性的内置式永磁同步电机转子位置锁相环观测器[J]. 电工技术学报, 2014, 29(3): 172-179. Wang Gaolin, Li Zhuomin, Zhan Hanlin, et al.Phase-locked-loop rotor position observer for IPMSM considering inverter nonlinearity[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 172-179. [7] 徐奇伟, 熊德鑫, 陈杨明, 等. 基于新型高频纹波电流补偿方法的内置式永磁同步电机无传感器控制[J]. 电工技术学报, 2023, 38(3): 680-691. Xu Qiwei, Xiong Dexin, Chen Yangming, et al.Research on sensorless control strategy of IPMSM based on new high frequency ripple current com-pensation method[J]. Transactions of China Elec-trotechnical Society, 2023, 38(3): 680-691. [8] 陈斌, 王婷, 吕征宇, 等. 电压型逆变器非线性的分析及补偿[J]. 电工技术学报, 2014, 29(6): 24-30. Chen Bin, Wang Ting, Lü Zhengyu, et al.The analysis and compensation of voltage source inverter nonlinearity[J]. Transactions of China Electrotech-nical Society, 2014, 29(6): 24-30. [9] 苏振中, 王东, 聂子玲, 等. 磁轴承用全桥功率放大器死区效应分析与补偿算法设计[J]. 中国电机工程学报, 2018, 38(19): 5829-5837. Su Zhenzhong, Wang Dong, Nie Ziling, et al.Analysis and compensation algorithm design of the dead-time effect of full-bridge power amplifier for active magnetic bearing[J]. Proceedings of the CSEE, 2018, 38(19): 5829-5837. [10] 沈泽微, 蒋栋, 陈嘉楠. 一种通用的PWM变流器开关脉冲延时补偿策略[J]. 中国电机工程学报, 2021, 41(9): 2990-2998. Shen Zewei, Jiang Dong, Chen Jianan.A general switch pulse delay compensation strategy for PWM converter[J]. Proceedings of the CSEE, 2021, 41(9): 2990-2998. [11] 韩坤, 孙晓, 刘秉, 等. 一种永磁同步电机矢量控制SVPWM死区效应在线补偿方法[J]. 中国电机工程学报, 2018, 38(2): 620-627. Han Kun, Sun Xiao, Liu Bing, et al.Dead-time on-line compensation scheme of SVPWM for per-manent magnet synchronous motor drive system with vector control[J]. Proceedings of the CSEE, 2018, 38(2): 620-627. [12] 倪瑞政, 李庭, 陈杰, 等. 一种脉冲式死区补偿方法的研究[J]. 电工技术学报, 2019, 34(增刊2): 553-559. Ni Ruizheng, Li Ting, Chen Jie, et al.Research on a pulse dead zone compensation method[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(S2): 553-559. [13] 康薇, 肖飞, 任强, 等. 双有源桥DC-DC变换器三移相调制及其死区效应分析和补偿[J]. 电工技术学报, 2024, 39(6): 1907-1922. Kang Wei, Xiao Fei, Ren Qiang, et al.Three-phase shift modulation of DC-DC converter with dual active bridges and its dead-time effect analysis and compensation[J]. Transactions of China Electro-technical Society, 2024, 39(6): 1907-1922. [14] 宁继超, 贲洪奇, 王雪松, 等. 带有死区时间补偿及电容电压平衡功能的二极管钳位型三电平逆变器数字调制方法[J]. 电工技术学报, 2024, 39(20): 6444-6461. Ning Jichao, Ben Hongqi, Wang Xuesong, et al.A digital modulation method for dead-time com-pensation and capacitor voltage balance in diode clamped three-level inverters[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6444-6461. [15] Park Y, Sul S K.A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity[J]. IEEE Transactions on Power Electronics, 2012, 27(12): 4837-4846. [16] Seyyedzadeh S M, Shoulaie A.Accurate modeling of the nonlinear characteristic of a voltage source inver-ter for better performance in near zero currents[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 71-78. [17] 龙江, 杨明, 陈扬洋, 等. 基于误差电压精确计算的表贴式永磁同步电机逆变器非线性补偿方法[J]. 中国电机工程学报, 2022, 42(17): 6425-6435, 23. Long Jiang, Yang Ming, Chen Yangyang, et al.Inverter nonlinearity compensation method for SPMSM drives based on accurate voltage error calculation[J]. Proceedings of the CSEE, 2022, 42(17): 6425-6435, 23. [18] Shang Chaoyi, Yang Ming, Long Jiang, et al.An accurate VSI nonlinearity modeling and compensation method accounting for DC-link voltage variation based on LUT[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 8645-8655. [19] Chen Zhiwei, Shi Tingna, Cao Yanfei, et al.An accurate inverter nonlinearity compensation method for IPMSM torque estimation based on numerical fitting[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(2): 2126-2138. [20] Wan Wenchao, Yu Tianbao, Duan Shanxu.Dead-time compensation in active NPC three-level inverters considering current ripple[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 1189-1199. [21] Yan Qingzeng, Yuan Xibo.A double-modulation-wave PWM for dead-time-effect elimination and synchronous rectification in SiC-device-based high-switching-frequency converters[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13500-13513. [22] 王勇, 高宁, 罗悦华, 等. 三相三电平并网逆变器无死区SPWM控制研究[J]. 中国电机工程学报, 2011, 31(21): 70-75. Wang Yong, Gao Ning, Luo Yuehua, et al.SPWM research for dead-time elimination in a three-phase three-level grid-connected inverter[J]. Proceedings of the CSEE, 2011, 31(21): 70-75. [23] Diao Naizhe, Sun Xianrui, Song Chonghui, et al.A multimodulation times SVPWM for dead-time effect elimination in three-level neutral point clamped converters[J]. IEEE Transactions on Industrial Electronics, 2021, 68(7): 5476-5485. [24] Yan Qingzeng, Xiao Langtao, Yuan Xibo, et al.A double-modulation-wave PWM with reduced dependency on current polarities for dead-time-effect elimination in three-level T-type converters[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8413-8427. [25] 杨波, 吴建德, 李武华, 等. 在线自适应PWM死区消除方法[J]. 电工技术学报, 2011, 26(11): 45-52. Yang Bo, Wu Jiande, Li Wuhua, et al.Online adaptive dead-time elimination method for PWM voltage source inverters[J]. Transactions of China Electrotechnical Society, 2011, 26(11): 45-52. [26] 刘和平, 路莹超, 王华斌, 等. 电压型逆变器分段死区补偿调制策略[J]. 电机与控制学报, 2018, 22(3): 25-32. Liu Heping, Lu Yingchao, Wang Huabin, et al.Dead-time compensation modulation strategy of subsection integrated in voltage source inverter[J]. Electric Machines and Control, 2018, 22(3): 25-32. [27] Yan Qingzeng, Zhao Rende, Yuan Xibo, et al.A DSOGI-FLL-based dead-time elimination PWM for three-phase power converters[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2805-2818. [28] 唐小琦, 苏玲宏, 周向东, 等. 基于FPGA的交流伺服系统电流环带宽扩展[J]. 华中科技大学学报(自然科学版), 2014, 42(2): 1-5. Tang Xiaoqi, Su Linghong, Zhou Xiangdong, et al.Bandwidth expansion of current loop for AC servo system based on FPGA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(2): 1-5. [29] 吴茂刚, 赵荣祥, 汤新舟. 正弦和空间矢量PWM逆变器死区效应分析与补偿[J]. 中国电机工程学报, 2006, 26(12): 101-105. Wu Maogang, Zhao Rongxiang, Tang Xinzhou.Dead-time effects analysis and compensation of SPWM and SVPWM inverter[J]. Proceedings of the CSEE, 2006, 26(12): 101-105. [30] 梁营玉, 刘建政. 电压源变流器死区效应分析及抑制策略[J]. 电力系统自动化, 2018, 42(24): 135-142. Liang Yingyu, Liu Jianzheng.Analysis and supper-ssion strategy of dead-time effect for voltage source converter[J]. Automation of Electric Power Systems, 2018, 42(24): 135-142. [31] 冯婉, 张文娟, 苗轶如, 等. 基于dq坐标系下6次谐波抑制的车用感应电机低频共振削弱方法[J]. 电工技术学报, 2023, 38(24): 6632-6645. Feng Wan, Zhang Wenjuan, Miao Yiru, et al.Low frequency resonance reduction method of induction motor used by electric vehicle based on sixth harmonic suppression in dq coordinate[J]. Transa-ctions of China Electrotechnical Society, 2023, 38(24): 6632-6645.