Topology Cooperative Optimization Design of Halbach Interior Permanent Magnet Synchronous Motor Considering Vibration and Noise Suppression
Gao Jianning1, Xu Wei1, Wang Jiyao1, Fang Shuhua1, Liu Xiping2
1. School of Electrical Engineering Southeast University Nanjing 210096 China; 2. School of Electrical Engineering and Automation Jiangxi University of Science and Technology Ganzhou 341000 China
Abstract:Addressing the problem of severe electromagnetic oscillations and disturbances in the synchronous motor of an internal permanent magnet, a kind of motor topology with auxiliary slots in fixed rotor is proposed. Composed of NdFeB and a ferrite mixed permanent magnet, the rotor functions in the Halbach magnetization setting of the permanent magnet section. Firstly, the resolution of the analytical depiction of motor vibration noise resulted in the development of a finite element motor model. Secondly, the suggestion is made for a joint optimization approach in motor topology, integrating parameter sensitivity analysis with the response surface technique. Taking into account the interplay among topological parameters, the optimization of topological structure parameters is conducted as per the suggested approach. Subsequently, the refined motor undergoes a multi-physical field coupling simulation, employing electromagnetic, mechanical, and acoustic fields to capture its vibration and noise characteristics. Comparisons are made between the outcomes of the stator's peak vibration amplitude and the level of noise sound pressure and those from the V-type internal permanent magnet motor. The results suggest that the proposed model can diminish the torque ripple, slot torque, and the intensity of the radial electromagnetic force, based on its ability to ensure the electromagnetic torque, thereby diminishing the motor's vibration intensity and noise pressure intensity. To confirm the motor structure's logic, the rotor's equivalent stress and total deformation in the mechanical field are computed. Firstly, motor rotor topology parameters are intricate, and conventional single structure optimization frequently culminates in an optimization goal, challenging to assess the efficacy of several motors. The optimization of single topological structure parameters will change the specific motor performance objectives, and the coupling optimization of multiple structure parameters will have nonlinear effects on the motor performance owing to alterations in the magnetic field environment of the air gap. Therefore, it is particularly important to consider the synergistic coupling effect of multiple topological parameters on the optimization objective. Simulations of the stator surface's vibration speed and amplitude are conducted within the mechanical environment. Concurrently, the surface's vibrational speed is incorporated into the sound field model, and a model simulating the spread of sound pressure levels due to noise within the air domain, within a 1 m radius of the motor, is conducted. Finally, the data are compared and analyzed to obtain the optimal vibration and noise characteristics of the motor. Aiming at the vibration and noise problem of IPMSM, a topology cooperative optimization scheme combining parameter sensitivity layering and response surface method is proposed in this paper. Initially, the study delves into the theoretical aspects of motor vibration and noise, leading to the construction of a finite element simulation model for motors. Then a hierarchical collaborative optimization method is adopted for multiple topology optimization parameters.Additionally, simulations and analyses of the optimized motor structure's vibration and noise are conducted in a multi-physics field, and juxtaposed with a V-type IPMSM motor. Ultimately, the steadiness of the motor's framework has been confirmed within the machine field.
[1] 唐任远. 现代永磁电机: 理论与设计[M]. 北京: 机械工业出版社, 1997. [2] 陈永校. 电机噪声的分析和控制[M]. 杭州: 浙江大学出版社, 1987. [3] Deng Wenzhe, Zuo Shuguang, Chen Wei, et al.Comparison of eccentricity impact on electromagnetic forces in internal- and external-rotor permanent magnet synchronous motors[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 1242-1254. [4] Liang Wenyi, Wang Jianfeng, Luk P C K, et al. Analytical study of stator tooth modulation on electromagnetic radial force in permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 11731-11739. [5] Liang Jianbin, Callegaro A D, Bilgin B, et al.A novel three-dimensional analytical approach for acoustic noise modeling in switched reluctance machines[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 2099-2109. [6] Yang S J.Low-noise electrical motors[M]. Oxford: Oxford Clarendon Press, 1981. [7] 陈永校, 诸福磊, 应善成. 电机噪声的分析和控制[M]. 杭州: 浙江大学出版社, 1987. [8] 张冉, 王秀和, 乔东伟, 等. 基于辅助槽的永磁电机激振力波削弱方法[J]. 中国电机工程学报, 2010, 30(18): 103-108. Zhang Ran, Wang Xiuhe, Qiao Dongwei, et al.Reduction of exciting force wave for permanent magnet motors by teeth notching[J]. Proceedings of the CSEE, 2010, 30(18): 103-108. [9] 谢颖, 李飞, 黎志伟, 等. 内置永磁同步电机减振设计与研究[J]. 中国电机工程学报, 2017, 37(18): 5437-5445, 5543. Xie Ying, Li Fei, Li Zhiwei, et al.Optimized design and research of vibration reduction with an interior permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2017, 37(18): 5437-5445, 5543. [10] 王晓远, 贺晓钰, 高鹏. 电动汽车用V型磁钢转子永磁电机的电磁振动噪声削弱方法研究[J]. 中国电机工程学报, 2019, 39(16): 4919-4926, 4994. Wang Xiaoyuan, He Xiaoyu, Gao Peng.Research on electromagnetic vibration and noise reduction method of V type magnet rotor permanent magnet motor electric vehicles[J]. Proceedings of the CSEE, 2019, 39(16): 4919-4926, 4994. [11] 李晓华, 赵容健, 田晓彤, 等. 逆变器供电对电动汽车内置式永磁同步电机振动噪声特性影响研究[J]. 电工技术学报, 2020, 35(21): 4455-4464. Li Xiaohua, Zhao Rongjian, Tian Xiaotong, et al.Study on vibration and noise characteristics of interior permanent magnet synchronous machine for electric vehicles by inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4455-4464. [12] 孔令星. 基于kriging算法的直线感应电机多目标优化设计研究[D]. 成都: 西南交通大学, 2018: 35-43. Kong Lingxing.Research on multi-objective optimization design of linear induction motor based on kriging algorithm[D]. Chengdu: Southwest Jiaotong University, 2018: 35-43. [13] 曹永娟, 冯亮亮, 毛瑞, 等. 轴向磁场永磁记忆电机多目标分层优化设计[J]. 中国电机工程学报, 2021, 41(6): 1983-1992. Cao Yongjuan, Feng Liangliang, Mao Rui, et al.Multi-objective stratified optimization design of axial-flux permanent magnet memory motor[J]. Proceedings of the CSEE, 2021, 41(6): 1983-1992. [14] 林玥兵, 郑晓钦, 陈春涛. 正弦削极修正模型的表贴式多相永磁电机模型-数据融合优化设计[J]. 中国电机工程学报, 2024, 44(增刊1): 296-305. Lin Yuebin, Zhen Xiaoqin, Chen Chuntao.Model and data complementary optimization design of surface mounted multiphase permanent magnet motors based on sinusoidal poling modified model[J]. Proceedings of the CSEE, 2024, 44(S1): 296-305. [15] 华逸舟, 刘奕辰, 潘伟, 等. 基于改进粒子群算法的无轴承永磁同步电机多目标优化设计[J]. 中国电机工程学报, 2023, 43(11): 4443-4452. Hua Yizhou, Liu Yichen, Pan Wei, et al.Multi-objective optimization design of bearingless permanent magnet synchronous motor using improved particle swarm optimization algorithm[J]. Proceedings of the CSEE, 2023, 43(11): 4443-4452. [16] Song Juncai, Dong Fei, Zhao Jiwen.An efficient multiobjective design optimization method for a PMSLM based on an extreme learning machine[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1001-1011. [17] 赵耀, 徐笠, 李东东, 等. 五相混合励磁双凸极电机多目标分层分期优化设计[J]. 电工技术学报, 2024, 39(22): 7045-7058. Zhao Yao, Xu Li, Li Dongdong, et al.Multi-objective layered and phased optimization design of five phase hybrid-excited double salient machine[J]. Transactions of China electrotechnical Society, 2024, 39(22): 7045-7058. [18] Zhu Xiaoyong, Huang Juan, Quan Li, et al.Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2613-2627. [19] Deng Wenzhe, Zuo Shuguang.Comparative study of sideband electromagnetic force in internal and external rotor PMSMs with SVPWM technique[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 956-966. [20] 高锋阳, 高建宁, 李明明, 等. 内置式Halbach永磁同步电机的参数敏感度分层优化设计[J]. 西安交通大学学报, 2022, 56(5): 180-190. Gao Fengyang, Gao Jianning, Li Mingming, et al.Optimization design of Halbach interior permanent magnet synchronous motor based on parameter sensitivity stratification[J]. Journal of Xi’an Jiaotong University, 2022, 56(5): 180-190. [21] 李泽星, 夏加宽, 刘铁法, 等. 基于分段交错不等磁极的表贴式永磁电机极频振动的削弱[J]. 电工技术学报, 2023, 38(4): 945-956. Li Zexing, Xia Jiakuan, Liu Tiefa, et al.Reduction of pole-frequency vibration of surface-mounted permanent magnet synchronous machines with piecewise stagger unequal poles[J]. Transactions of China Electro-technical Society, 2023, 38(4): 945-956. [22] 鲍晓华, 明帅, 陈国玮, 等. 变频驱动下双斜槽转子感应电机径向电磁力特性分析[J]. 电工技术学报, 2023, 38(10): 2613-2624. Bao Xiaohua, Ming Shuai, Chen Guowei, et al.Analysis of radial electromagnetic force characteristics of inverter drive double skewed rotor induction motor[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2613-2624. [23] 刘壮, 韩雪岩, 高俊. 基于热固耦合的高速永磁电动机转子强度分析[J]. 电气技术, 2021, 22(5): 1-5, 101. Liu Zhuang, Han Xueyan, Gao Jun.Strength analysis of high-speed permanent magnet motor rotor based on thermo-solid coupling[J]. Electrical Engineering, 2021, 22(5): 1-5, 101. [24] 李玮, 汪泽润, 张凤阁. 基于FEM/Kriging近似模型结合进化算法的表贴式高速永磁电机转子强度优化[J]. 电工技术学报, 2023, 38(4): 936-944, 956. Li Wei, Wang Zerun, Zhang Fengge.Rotor strength optimization of surface mount high speed permanent magnet motor based on FEM/Kriging approximate model and evolutionary algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 936-944, 956. [25] 高建宁, 高锋阳, 姚普, 等. 基于敏感度分层优化的Halbach永磁电机电磁振动分析[J]. 哈尔滨工业大学学报, 2024, 56(7): 142-153. Gao Jianning, Gao Fengyang, Yao Pu, et al.Electromagnetic vibration analysis of Halbach permanent magnet motor based on sensitivity stratification optimization[J]. Journal of Harbin Institute of Technology, 2024, 56(7): 142-153. [26] 刘栋良, 詹成根, 屈峰, 等. 无人机17 kW电机振动噪声分析与巡航转速下尖端噪声优化[J]. 电工技术学报, 2024, 39(6): 1749-1763. Liu Dongliang, Zhan Chenggen, Qu Feng, et al.Vibration noise analysis and tip noise optimization of unmanned aerial vehicle 17 kW motor at cruise speed[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1749-1763.