Abstract:It is difficult to implement two-ended fault location method between the travelling wave recorders made by different companies, because of the method's strict reliance on remote data and two ended time synchronization. To solve this problem, coordinated double-ended travelling wave fault location method independent of two side time synchronization is proposed in this paper. The features patterns of faulted surge arrival sequence were analyzed: After eliminating the disturbance caused from sound lines by comparing amplitude and phase in group, the sequence of surge arrival can be divided into two patterns. In fierce faulted pattern, faulted travelling waves approximatively propagate independently in two separated segments composed by each monitored buses and faulted point, which makes the time delay consistent for adjacent surges at same side and the sum of corresponding time delay consistent for surges at separate sides. Refraction surges can be detected in weak faulted pattern, which makes sequence of surge arrival consistent at two terminals. The two faulted modes can be identified through matched sequence of initial and follow-up double-ended surges, and the separated two-ended data-driven based travelling wave fault location collaborative approaches independent of two-ended time synchronization were proposed. The proposed method is proven feasible and effective by both digital simulations and field data record.
张广斌,束洪春,于继来,孙向飞. 不依赖双侧时钟同步的输电线双端行波测距[J]. 电工技术学报, 2015, 30(20): 199-209.
Zhang Guangbin, Shu Hongchun, Yu Jilai, Sun Xiangfei. Double-Ended Travelling Wave Fault Location Independent of Two Side Time Synchronization. Transactions of China Electrotechnical Society, 2015, 30(20): 199-209.
[1] 徐丙垠. 利用暂态行波的输电线路故障测距技术[D]. 西安: 西安交通大学, 1991. [2] 董新洲, 葛耀中, 徐丙垠. 输电线路暂态电流行波的故障特征及其小波分析[J]. 电工技术学报. 1999, 14(1): 58-62. Dong Xinzhou, Ge Yaozhong, Xu Bingyin. Fault characteristic of transient current travelling waves and its analysis with wavelet transform[J]. Transactions of China Electrotechnical Society, 1999, 14(1): 58-62. [3] 徐敏, 蔡泽祥, 刘永浩, 等. 基于宽频信息的高压直流输电线路行波故障测距方法[J]. 电工技术学报, 2013, 28(1): 259-265. Xu Min, Cai Zexiang, Liu Yonghao, et al. A novel fault location method for HVDC transmission line based on the broadband travelling wave information [J]. Transactions of China Electrotechnical Society, 2013, 28(1): 259-265. [4] 李海锋, 王钢, 赵建仓. 输电线路感应雷击暂态特征分析及其识别方法[J]. 电力系统自动化, 2004, 24(3): 114-119. Li Haifeng, Wang Gang, Zhao Jiancang. Study on characteristics and identification of transients on transmission lines caused by indirect lightning stroke [J]. Automation of Electric Power Systems, 2004, 24(3): 114-119. [5] 邬林勇, 何正友, 钱清泉. 单端行波故障测距的频域方法[J]. 中国电机工程学报, 2008, 28(25): 99-104. Wu Linyong, He Zhengyou, Qian Qingquan. A frequency domain approach to single-ended traveling wave fault location[J]. Proceedings of the CSEE, 2008, 28(25): 99-104. [6] Magnago F H, Abur A. Fault location using wavelets [J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1475-1480. [7] 陈平, 葛耀中, 徐丙垠, 等. 现代行波故障测距原理及其在实测故障分析中的应用-D型原理[J]. 继电器, 2004, 32(3): 14-17, 28. Chen Ping, Ge Yaozhong, Xu Bingyin, et al. Modern travelling wave-based fault location principle and its applications to actual fault analysis- type D principle [J]. Relay, 2004, 32(3): 14-17, 28. [8] 曾祥君, 尹项根, 林福昌. 基于行波传感器的输电线路故障定位方法研究[J]. 中国电机工程学报, 2002, 22(6): 42-47. Zeng Xiangjun, Yin Xianggen, Lin Fuchang, Study on fault location for transmission lines based on the sensor of travelling-wave[J]. Proceedings of the CSEE, 2002, 22(6): 42-47. [9] 李泽文, 姚建刚, 曾祥君, 等. 基于整个电网行波时差的故障定位方法[J]. 中国电机工程学报, 2009, 29(4): 60-64. Li Zewen, Yao Jiangang, Zeng Xiangjun, et al. Fault location based on traveling wave time difference in power grid[J]. Proceedings of the CSEE, 2009, 29(4): 60-64. [10] 覃剑, 陈祥训, 郑健超, 等. 利用小波变换的双端行波测距新方法[J]. 中国电机工程学报, 2000, 20(8): 6-10. Qin Jian, Chen Xiangxun, Zheng Jianchao, et al. A new double terminal method of travelling wave fault location using wavelet transform[J]. Proceedings of the CSEE, 2000, 20(8): 6-10. [11] 曾祥君. 电力线路故障检测与定位新原理及其信息融合实现研究[D]. 武汉: 华中科技大学, 2000. [12] 谢民. 220kV电网行波测距系统组网运行实践探讨[J]. 电力自动化设备, 2010, 30(5): 135-138, 141. Xie Min. Networking operation practice of traveling wave based fault locating system for 220kV grid[J]. Electric Power Automation Equipment, 2010, 30(5): 135-138, 141. [13] 陈羽, 刘东, 徐丙垠. 基于IEC 61850的行波测距装置建模[J]. 电力系统自动化, 2013, 37(2): 86-90. Chen Yu, Liu Dong, Xu Bingyin. Travelling wave fault location equipment modeling based on IEC61850 [J]. Automation of Electric Power Systems, 2013, 37(2): 86-90. [14] 施慎行, 董新洲, 周双喜. 单相接地故障行波分析[J]. 电力系统自动化, 2005, 29(23): 29-32, 53. Shi Shenxing, Dong Xinzhou, Zhou Shuangxi. Analysis of single-phase-to-ground fault generated traveling waves[J]. Automation of Electric Power Systems, 2005, 29(23): 29- 32, 53. [15] 荆雷, 马文君, 常丹华. 基于动态时间规整的手势加速度信号识别[J]. 传感技术学报, 2012, 25(1): 72-76. Jing Lei, Ma Wenjun, Chang Danhua. Gesture accelera- tion signals recognition based on dynamic time warping [J]. Chinese Journal of Sensors and Actuators, 2012, 25(1): 72-76. [16] 王振浩, 杜凌艳, 李国庆, 等. 动态时间规整算法诊断高压断路器故障[J]. 高电压技术, 2006, 32(10): 36-38. Wang Zhenhao, Du Lingyan, Li Guoqing, et al. Fault diagnosis of high voltage circuit breakers based on dynamic time warping algorithm[J]. High Voltage Engineering, 2006, 32(10): 36-38. [17] 汪可, 杨丽君, 廖瑞金, 等. 动态时间规整算法在局部放电模式识别中的应用[J]. 重庆大学学报, 2011, 34(12): 54-59. Wang Ke, Yang Lijun, Liao Ruijin, et al. Application of dynamic time warping algorithm to partical discharge pattern recognition[J]. Journal of Chongqing University, 2011, 34(12): 54-59. [18] 周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术-基于主元分析与偏最小二乘的方法[M]. 北京: 科学出版社, 2011. [19] 姜宪国, 王增平, 李琛. 基于稀疏PMU布点的广域保护全网时间同步方案[J]. 电力自动化设备, 2012, 32(9): 122-127. Jiang Xianguo, Wang Zengping, Li Chen. Whole- network time synchronization of wide-area protection based on spares PMU placement[J]. Electric Power Automation Equipment, 2012, 32(9): 122-127. [20] 施慎行, 董新洲, 周双喜. 单相接地故障下第2个反向行波识别的新方法[J]. 电力系统自动化, 2006, 30(1): 41-44, 59. Shi Shenxing, Dong Xinzhou, Zhou Shuangxi. New principle to identify the second reverse traveling wave generated by single-phase-to-ground fault[J]. Automa- tion of Electric Power Systems, 2006, 30(1): 41-44, 59. [21] Abur A, Magnago F H. Use of time delays between modal components in wavelet based fault location[J]. International Journal of Electrical Power and Energy Systems, 2000, 22(6): 397-403.