电工技术学报  2024, Vol. 39 Issue (8): 2412-2421    DOI: 10.19595/j.cnki.1000-6753.tces.230163
电机及其系统 |
永磁伺服系统转速跟踪控制与数据驱动的参数设计方法
连传强, 郭力源, 许观达, 肖飞, 张伟伟
海军工程大学舰船综合电力技术国防科技重点实验室 武汉 430033
Speed Tracking Control Strategy and Data-Driven Parameter Design Method of Permanent Magnet Servo System
Lian Chuanqiang, Guo Liyuan, Xu Guanda, Xiao Fei, Zhang Weiwei
National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China
全文: PDF (2822 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在永磁伺服控制系统中,传统的转速控制策略在低频段存在幅值与相位偏差问题,降低了转速跟踪控制精度。为解决该问题,该文提出了一种高精度的转速跟踪控制策略与数据驱动的参数设计方法。主要思路是在转速控制环节串联一个滞后-超前补偿器,用以校正低频段的幅值与相位;以低频段补偿后的幅值及相位误差最小为优化目标,同时约束补偿器在全频带范围内的最大幅值增益和相移,设计了一种数据驱动的补偿器参数优化方法,并对补偿后控制系统的性能进行了分析评估。实验结果表明,基于实验数据所设计的补偿器在转速指令频率小于1 rad/s的低频段区间内,转速跟踪误差小于2 r/min,相较于传统方法控制精度显著提升;在跟踪转速阶跃指令时,该文方法和传统方法的控制效果相当,这说明该文方法在改善低频段跟踪性能的同时,保持了控制系统在中高频段原有的幅频和相频特性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
连传强
郭力源
许观达
肖飞
张伟伟
关键词 永磁伺服系统转速控制滞后-超前补偿器数据驱动参数优化    
Abstract:The servo system is also called a follow-up system, a feedback control system to follow or reproduce a process accurately. The position, orientation, state, and other controlled output variables of the object can follow the arbitrary changes of the input target (or given value). Because the servo system can achieve precise speed and position control in a wide range, it is generally used in applications requiring high system performance, such as industrial production and military defense security. With the improvement in manufacturing technology of permanent magnet materials, the permanent magnet servo system has been developed rapidly, and the control performance has been improved. However, traditional speed control strategies in the servo system have amplitude and phase deviation problems in the low-frequency band, which reduces the precision of speed tracking control.
A high-precision speed-tracking control strategy and a data-driven parameter design method are proposed to improve the speed-tracking accuracy of the servo system in the entire speed range. Firstly, a lag-lead compensator is connected in series in the speed control link to correct the amplitude and phase of the low-frequency band. Speed tracking accuracy is improved by making the corrected amplitude and phase shift tend to zero. Secondly, a data-driven parameter optimization design method is proposed to minimize amplitude and phase errors after low-frequency compensation and constrain the maximum value gain and phase shift of the compensator in the full-frequency band. Thirdly, according to simulation or experimental data, the actual amplitude gain and phase shift of the system in the low-frequency band are obtained, enhancing the adaptability of parameters. The parameters of the lag-lead compensator are continuously optimized based on the feedback junction. Thus, the compensated amplitude gain and phase shift have the minimum mean square error. Compared with traditional methods, the designed lag-lead compensator and parameter optimization method match the actual system, avoiding adverse effects caused by uncertain factors like the mismatch of the moment of inertia.
The experimental results show that the compensator designed based on experimental data has a speed tracking error of less than 2 r/min in the low-frequency range with a speed instruction frequency of less than 1 rad/s, significantly improving the speed control accuracy. Moreover, the control effect is equivalent to that of the traditional method when tracking the speed step command, which does not affect the dynamic characteristics of the servo system.
The proposed method improves tracking performance in the low-frequency band while maintaining the original amplitude-frequency and phase-frequency characteristics of the control system in the middle and high-frequency bands. It is conducive to improving the speed tracking accuracy of the servo system in the entire speed range, promoting the engineering application of permanent magnet servo systems.
Key wordsPermanent magnet servo system    speed control    lag-lead compensator    data-driven    parameter optimization   
收稿日期: 2023-02-14     
PACS: TM351  
基金资助:国家自然科学基金(51807200, 52177202)和国家重点基础研究发展计划(973)(2015CB251004)资助项目
通讯作者: 张伟伟 男,1989年生,博士,助理研究员,研究方向为永磁同步电机驱动控制技术等。E-mail: zw7589@163.com   
作者简介: 连传强 男,1986年生,博士,副研究员,研究方向为电机系统及其控制、人工智能。E-mail: wzdslcq@163.com
引用本文:   
连传强, 郭力源, 许观达, 肖飞, 张伟伟. 永磁伺服系统转速跟踪控制与数据驱动的参数设计方法[J]. 电工技术学报, 2024, 39(8): 2412-2421. Lian Chuanqiang, Guo Liyuan, Xu Guanda, Xiao Fei, Zhang Weiwei. Speed Tracking Control Strategy and Data-Driven Parameter Design Method of Permanent Magnet Servo System. Transactions of China Electrotechnical Society, 2024, 39(8): 2412-2421.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.230163          https://dgjsxb.ces-transaction.com/CN/Y2024/V39/I8/2412