Fault Location of Cross-Connected Cables Based on Reactive Power Characteristics of Core-Sheath Transition Resistance
Yang Mingjia1,2, Xia Chengjun1,2, Lai Shengjie1,2, Chi Zibin1,2
1. School of Electric Power South China University of Technology Guangzhou 510640 China; 2. Guangdong Province' New Energy Power System Intelligent Operation and Control Enterprise Key Laboratory Guangzhou 510663 China
Abstract:High-voltage power cables are widely used in the construction of urban power grid, but there are often short-circuit faults mainly caused by single-phase faults. Rapid and accurate fault location is of great significance to maintain the stable operation of power grid. The high voltage cable with a length of more than one kilometer usually adopts the cross-connected grounding mode, and the coupling between the cable structure, fault phase and non-fault phase brings great difficulties to fault location. At present, the main fault location methods of cross-connected cables are traveling wave method and impedance method, but the reliability of traveling wave method is low, and the impedance method has shortcomings such as not considering the influence between the three phases and ignoring the line capacitance. Therefore, a fault location method for cross-connected cables is proposed in this paper. Firstly, based on the double π model, considering the coupling effect of the cable metal sheath on the wire core and the influence of the line capacitance, an equivalent model is established for the single-phase short-circuit fault of the cross-connected grounding cable. Secondly, the voltage and current of cable core and sheath are collected before and after the fault occurs, and the difference integral of sheath circulation before and after the fault is calculated according to the measured current of the cable sheath circulation monitoring point, and the short-circuit fault area is judged by whether the difference integral change is the largest. Then, the cable parameters are modified based on the pre-fault electrical volume, and the voltage and current along the first and end of the fault section are calculated by the post-fault electrical volume. Finally, the fault location equation is constructed based on the zero reactive power consumed by the transition resistance of the fault branch, and the fault distance is obtained by iterative calculation. The simulation results of the proposed method show that by calculating the integral of the difference between the measured current at both ends of different sections of cross-connected cable as the characteristic current, the characteristic current value of the fault section is obviously greater than that of the non-fault section, and the fault section can be effectively judged. The method of line parameter correction can modify the inaccurate and changing line parameters within 1.1%, and reduce the electrical parameter error obtained by calculating or measuring the initial conditions of the cable. The fault location equation is established and iterated repeatedly to obtain the location result, which avoids the accident of the calculation result. The simulation results show that the fault distance, fault type, cable arrangement, fault initial phase angle, transition resistance, line parameter change and ground resistance have little influence on the method, and the maximum distance error is less than 0.4%. Compared with the two-layer impedance model, the impedance model based on the line distribution capacitance has better location accuracy, so the line capacitance should not be ignored in the cable fault location.
杨明嘉, 夏成军, 赖胜杰, 池梓斌. 基于线芯-护层过渡电阻无功特性的交叉互联电缆故障测距[J]. 电工技术学报, 2024, 39(5): 1372-1389.
Yang Mingjia, Xia Chengjun, Lai Shengjie, Chi Zibin. Fault Location of Cross-Connected Cables Based on Reactive Power Characteristics of Core-Sheath Transition Resistance. Transactions of China Electrotechnical Society, 2024, 39(5): 1372-1389.
[1] 单秉亮, 李舒宁, 杨霄, 等. XLPE配电电缆缺陷诊断与定位技术面临的关键问题[J]. 电工技术学报, 2021, 36(22): 4809-4819. Shan Bingliang, Li Shuning, Yang Xiao, et al.Key problems faced by defect diagnosis and location technologies for XLPE distribution cables[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4809-4819. [2] 李蓉, 周凯, 万航, 等. 基于输入阻抗谱的电力电缆本体局部缺陷类型识别及定位[J]. 电工技术学报, 2021, 36(8): 1743-1751. Li Rong, Zhou Kai, Wan Hang, et al.Identification and location of local defects in power cable body based on input impedance spectroscopy[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1743-1751. [3] 王昊月, 李成榕, 王伟, 等. 高压频域介电谱诊断XLPE电缆局部绝缘老化缺陷的研究[J]. 电工技术学报, 2022, 37(6): 1542-1553. Wang Haoyue, Li Chengrong, Wang Wei, et al.Local aging diagnosis of XLPE cables using high voltage frequency domain dielectric spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1542-1553. [4] 王昊月, 王晓威, 孙茂伦, 等. XLPE电缆绝缘热老化的高压频域介电谱诊断方法[J]. 电工技术学报, 2022, 37(17): 4497-4507. Wang Haoyue, Wang Xiaowei, Sun Maolun, et al.High voltage frequency domain dielectric spectroscopy diagnosis method for thermal aging of XPLE cables[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4497-4507. [5] 刘骥, 闫爽, 王守明, 等. 基于低频高压频域介电谱的XLPE电缆电树枝老化状态评估[J]. 电工技术学报, 2023, 38(9): 2510-2518. Liu Ji, Yan Shuang, Wang Shouming, et al.Evaluation of electrical tree aging state of XLPE cables based on low frequency and high voltage frequency domain spectroscopy[J]. Transactions of China Electrote-chnical Society, 2023, 38(9): 2510-2518. [6] 赵铁军, 王秀斌, 虞跃. 基于金属护层模型参数辨识的电缆单相故障单端测距方法[J]. 电力系统保护与控制, 2019, 47(21): 83-91. Zhao Tiejun, Wang Xiubin, Yu Yue.A single terminal fault location method for single phase fault of cable based on parameter identification of metal sheath model[J]. Power System Protection and Control, 2019, 47(21): 83-91. [7] 赵书静, 詹博博, 龚梁涛, 等. 基于调频连续波相位敏感特性的电缆局部缺陷检测方法[J]. 电工技术学报, 2023, 38(11): 3009-3021. Zhao Shujing, Zhan Bobo, Gong Liangtao, et al.Research on cable local defect detection method based on phase-sensitive characteristics of frequency modulated continuous wave[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3009-3021. [8] 雷芳菲, 褚继峰, 刘洋, 等. 基于半导体气体传感阵列的电缆过热故障诊断方法[J]. 电工技术学报, 2023, 38(13): 3651-3664. Lei Fangfei, Chu Jifeng, Liu Yang, et al.Fault diagnosis of cable overheating based on semiconductor gas sensing array[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3651-3664. [9] 陶宇航, 张熹, 宫祥龙. 10kV电缆故障测距及定位典型案例分析[J]. 电气技术, 2022, 23(2): 88-93. Tao Yuhang, Zhang Xi, Gong Xianglong.Typical cases analysis of 10kV cable fault location[J]. Electrical Engineering, 2022, 23(2): 88-93. [10] 鹿洪刚, 覃剑, 陈祥训, 等. 电力电缆故障测距综述[J]. 电网技术, 2004, 28(20): 58-63. Lu Honggang, Qin Jian, Chen Xiangxun, et al.Overview of power cable fault location[J]. Power System Technology, 2004, 28(20): 58-63. [11] 朱柏寒, 陈羽, 马金杰. 基于波前陡度的输电线路单端行波故障测距[J]. 电力系统自动化, 2021, 45(9): 130-135. Zhu Baihan, Chen Yu, Ma Jinjie.Wavefront steepness based single-ended traveling wave fault location for transmission lines[J]. Automation of Electric Power Systems, 2021, 45(9): 130-135. [12] 孙中玉, 徐丙垠, 王玮, 等. 电缆故障脉冲电流测距系统建模与仿真[J]. 电力系统自动化, 2021, 45(4): 142-147. Sun Zhongyu, Xu Bingyin, Wang Wei, et al.Modeling and simulation of cable fault location system based on pulse current[J]. Automation of Electric Power Systems, 2021, 45(4): 142-147. [13] 束洪春, 田鑫萃, 董俊, 等. 利用故障特征频带和TT变换的电缆单端行波测距[J]. 中国电机工程学报, 2013, 33(22): 103-112, 17. Shu Hongchun, Tian Xincui, Dong Jun, et al.A single terminal cable fault location method based on fault characteristic frequency band and TT transform[J]. Proceedings of the CSEE, 2013, 33(22): 103-112, 17. [14] 梁睿, 靳征, 王崇林, 等. 行波时频复合分析的配电网故障定位研究[J]. 中国电机工程学报, 2013, 33(28): 130-136, 20. Liang Rui, Jin Zheng, Wang Chonglin, et al.Research of fault location in distribution networks based on integration of travelling wave time and frequency analysis[J]. Proceedings of the CSEE, 2013, 33(28): 130-136, 20. [15] 唐忠, 杨建. 交叉互联电缆行波故障测距的研究[J]. 电测与仪表, 2016, 53(5): 64-69, 79. Tang Zhong, Yang Jian.Research on traveling wave based fault location for cross-bonded power cable[J]. Electrical Measurement & Instrumentation, 2016, 53(5): 64-69, 79. [16] 尹丽菊, 于毅, 咸日常, 等. 基于无监督学习的交叉互联电缆行波测距方法[J]. 智慧电力, 2021, 49(4): 89-94, 100. Yin Liju, Yu Yi, Xian Richang, et al.Traveling wave ranging method for cross-bonded cable based on unsupervised learning[J]. Smart Power, 2021, 49(4): 89-94, 100. [17] 姜杰, 王鹏, 黄正炫, 等. 基于改进线路参数模型的配网电缆单相接地测距方法[J]. 电网技术, 2012, 36(5): 185-189. Jiang Jie, Wang Peng, Huang Zhengxuan, et al.Fault location of single-phase earth for power cable in distribution network based on improved cable line paramter model[J]. Power System Technology, 2012, 36(5): 185-189. [18] 索南加乐, 王增超, 康小宁, 等. 基于线性微分方程参数识别的单端准确故障测距算法[J]. 电力自动化设备, 2011, 31(12): 9-14, 20. Suonan Jiale, Wang Zengchao, Kang Xiaoning, et al.Accurate fault location algorithm based on parameter identification of linear differential equation with single end data[J]. Electric Power Automation Equipment, 2011, 31(12): 9-14, 20. [19] 张姝, 林圣, 唐进, 等. 基于双层阻抗模型的三相单芯电缆自恢复故障定位[J]. 电工技术学报, 2016, 31(17): 1-10. Zhang Shu, Lin Sheng, Tang Jin, et al.Fault location of self-clearing fault in three phase single core cables based on double impedance model[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 1-10. [20] 唐进, 张姝, 林圣, 等. 计及金属护层结构的电缆单端故障测距方法[J]. 中国电机工程学报, 2016, 36(6): 1748-1756. Tang Jin, Zhang Shu, Lin Sheng, et al.Single-terminal fault locating method of cables considering the metal sheath structure[J]. Proceedings of the CSEE, 2016, 36(6): 1748-1756. [21] 孙建明, 唐进. 考虑金属护层结构的电力电缆单端故障识别方法[J]. 电力科学与技术学报, 2017, 32(4): 96-101. Sun Jianming, Tang Jin.Single-ended fault identification method of cables considered the sheath structure[J]. Journal of Electric Power Science and Technology, 2017, 32(4): 96-101. [22] 徐星, 陈向荣, 杜振东, 等. 基于非解耦节点导纳矩阵的随桥电缆接地方式研究[J]. 电工技术学报, 2021, 36(17): 3664-3674. Xu Xing, Chen Xiangrong, Du Zhendong, et al.Study on bridge-cable grounding system based on the non-decoupling nodal admittance matrix[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3664-3674. [23] 李根, 王航, 刘海康, 等. 基于逻辑回归的高压电缆交叉互联接地系统缺陷分类识别方法[J]. 高电压技术, 2021, 47(10): 3674-3683. Li Gen, Wang Hang, Liu Haikang, et al.Classification and identification method of grounding system defects in cross-bonded HV cables based on logistic regression[J]. High Voltage Engineering, 2021, 47(10): 3674-3683. [24] 方春华, 李景, 汤世祥, 等. 基于接地电流的交叉互联箱故障诊断技术研究[J]. 高压电器, 2018, 54(6): 16-23. Fang Chunhua, Li Jing, Tang Shixiang, et al.Fault diagnosis of cross-bonded box based on grounding current[J]. High Voltage Apparatus, 2018, 54(6): 16-23. [25] 赖胜杰, 夏成军, 池梓斌, 等. 考虑泄漏电流及层间耦合的高压电缆金属护套环流计算与分析[J]. 高电压技术, 2022: 1-12. Lai Shengjie, Xia Chengjun, Chi Zibin, et al.Calculation and analysis of circulating current in metal sheath for HV cable considering leakage current and interlayer coupling[J]. High Voltage Engineering, 2022: 1-12. [26] 郑肇骥, 王焜明. 高压电缆线路[M]. 北京: 水利电力出版社, 1983. [27] 王雅芳. XLPE电力电缆接地系统与感应环流分析[D]. 杭州: 浙江大学, 2012. [28] 付松林, 何光华, 徐骏, 等. 大段长高压电缆护层保护器暂态特性分析与参数优化设计[J]. 电网与清洁能源, 2021, 37(1): 32-41. Fu Songlin, He Guanghua, Xu Jun, et al.Transient characteristic analysis and parameter optimization of sheath protector for large-length high voltage cable[J]. Advances of Power System & Hydroelectric Engineering, 2021, 37(1): 32-41. [29] 徐政, 钱洁. 电缆电气参数不同计算方法及其比较[J]. 高电压技术, 2013, 39(3): 689-697. Xu Zheng, Qian Jie.Comparison of different methods for calculating electrical parameters of power cables[J]. High Voltage Engineering, 2013, 39(3): 689-697. [30] 钱洁. 电力电缆电气参数及电气特性研究[D]. 杭州: 浙江大学, 2013. [31] 聂永杰, 赵现平, 李盛涛. XLPE电缆状态监测与绝缘诊断研究进展[J]. 高电压技术, 2020, 46(4): 1361-1371. Nie Yongjie, Zhao Xianping, Li Shengtao.Research progress in condition monitoring and insulation diagnosis of XLPE cable[J]. High Voltage Engineering, 2020, 46(4): 1361-1371. [32] 洪翠, 林昶, 高伟, 等. 电流积分余弦相似性在直流配电线路故障定位中的应用[J]. 电机与控制学报, 2022, 26(8): 88-99. Hong Cui, Lin Chang, Gao Wei, et al.Application of cos-similarity of current integrals on the location of fault line in a DC distribution networks[J]. Electric Machines and Control, 2022, 26(8): 88-99. [33] 王利平, 王晓茹, 王伟, 等. 输电线路故障测距实用算法研究[J]. 电力系统保护与控制, 2014, 42(16): 52-58. Wang Liping, Wang Xiaoru, Wang Wei, et al.Study of faults location utilizing algorithm on power transmission lines[J]. Power System Protection and Control, 2014, 42(16): 52-58. [34] 陈旭, 朱永利, 郭小红, 等. 基于相位特性的高压输电线路双端非同步故障测距算法[J]. 电力系统自动化, 2015, 39(22): 152-156, 163. Chen Xu, Zhu Yongli, Guo Xiaohong, et al.A two-terminal fault location algorithm using asynchronous data based on phase characteristics for high voltage transmission line[J]. Automation of Electric Power Systems, 2015, 39(22): 152-156, 163. [35] 辛振涛, 尚德基, 尹项根. 一种双端测距算法的伪根问题与改进[J]. 继电器, 2005, 33(6): 36-38, 45. Xin Zhentao, Shang Deji, Yin Xianggen.False root and its improvement of a two-terminal fault location algorithm on transmission line[J]. Relay, 2005, 33(6): 36-38, 45. [36] 何学锦. 电力电缆过电压检测方法建模与分析[D]. 杭州: 浙江大学, 2019. [37] 刘福源, 王航, 夏湛然, 等. 交叉互联高压电缆护层保护器故障对同回路两端护层电流相量差的影响[J]. 高电压技术, 2023, 49(3): 1244-1253. Liu Fuyuan, Wang Hang, Xia Zhanran, et al.Influence of the sheath voltage limiter fault on the sheath current phasor difference between the two ends in the same sheath loop in cross-bonded HV cables[J]. High Voltage Engineering, 2023, 49(3): 1244-1253. [38] 张煌, 黄嘉盛, 牛海清, 等. 高压电缆外护层绝缘降低时护层保护器的参数配置[J]. 南方电网技术, 2017, 11(8): 34-40, 60. Zhang Huang, Huang Jiasheng, Niu Haiqing, et al.Sheath protector parameter configuration of high voltage cable with decreased insulation[J]. Southern Power System Technology, 2017, 11(8): 34-40, 60.