Abstract:The mechanical and electrical performance of gas gap switch’ trigger cavity inevitably decreases caused by repeated trigger discharge, causing a serious problem of trigger failure. In order to achieve stable trigger conduction of the gas gap switch, the study of the degradation process of the gas switch trigger performance under repeated trigger discharge was carried out based on the trigger lifetime research platform, the trigger conduction parameters strongly correlated with the deterioration process of the gas switch trigger cavity performance were obtained. Ultimately, a trigger lifetime prediction model of gas gap switch based on long short term memory (LSTM) network was established to predict the remaining trigger lifetime. From the experimental results, it can be concluded: (1) At the early stage of trigger lifetime, the plasma jet height is up to 10.1 mm, leading to the excellent trigger conduction performance of gas gap switch, with breakdown delay and contact delay as low as 68 μs and 77 μs. Under the effect of intense ablation along the surface arc current, the inner diameter at pin electrode and the nozzle diameter of trigger cavity increases gradually, the pressure difference between the inside and outside of the trigger cavity nozzle decreases, leading to a decrease in the plasma jet characteristics parameters, weakening the distortion effect of the background electric field in the main gap, resulting in the increase of the breakdown delay Δt1 and trigger delay Δt2. Within 500~800 trigger discharge times, pre-breakdown effect occurs obviously during the trigger conduction process of gas gap switch, leading to the breakdown delay and trigger delay disperse notably with the fluctuation value up to 30 μs. At the end of trigger lifetime, the jet height is as low as 5.5 mm, which cannot meet the needs for stable trigger conduction of gas gap switch, causing the trigger failure of gas gap switch with a trigger lifetime of up to 1 200 times. (2) Under repeated trigger discharge, the ablation holes appear on the inner wall of trigger cavity at pin electrode and develop from point and line to plane, the carbonization products on the inner wall of trigger cavity at nozzle accumulate to form the pits and bulges, suppressing the generation and accumulation process of plasma in the trigger cavity. Furthermore, after the accumulation effect of high temperature arc ablation, PTFE has undergone intense electrochemical reaction, and the decomposition products are mainly CF4, C2F4, C2F6, C3F6 and other strong electronegative gases. In SF6 trigger environment with a sealed cavity, taking into account the electronegative effect of decomposition products produced by discharge ablation, the development process of plasma jet is obviously inhibited and the trigger lifetime is restricted. (3) Based on GRA and PCC, considering the correlation law between plasma jet characteristic parameters (jet height, jet diameter and jet area), trigger discharge delay (Δt0, Δt1, Δt2) and the trigger performance degradation of gas gap switch, the plasma jet height is used as the predictor. Firstly, the gas switch trigger lifetime prediction model based on LSTM was established. Dropout technology is introduced to the model to avoid the over-fitting caused by model complexity. Secondly, the original trigger conduction characteristic parameters are divided into multiple subsequences by sliding time window, and the dependence between sequences is introduced, so as to better capture the characteristics and laws in the data sequence. Finally, the Dropout ratio, the number of hidden layer units, and the time step were optimized to decrease RMSE and MAPE between the model predicted value and the experimental value, ensuring the prediction accuracy of model. The remaining trigger lifetime prediction error is within 10%, which can well meet the requirements of gas switch trigger lifetime prediction.
董冰冰, 陈子建. 配电网用气体间隙开关触发腔性能劣化进程及剩余寿命预测方法[J]. 电工技术学报, 2024, 39(13): 4127-4138.
Dong Bingbing, Chen Zijian. Performance Degradation and Remaining Trigger Lifetime Prediction of Gas Gap Switch’ Trigger Cavity for Distribution Network. Transactions of China Electrotechnical Society, 2024, 39(13): 4127-4138.
[1] 王建华, 张国钢, 耿英三, 等. 智能电器最新技术研究及应用发展前景[J]. 电工技术学报, 2015, 30(9): 1-11. Wang Jianhua, Zhang Guogang, Geng Yingsan, et al.The latest technology research and application prospects of the intelligent electrical apparatus[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 1-11. [2] 唐巍, 张起铭, 张璐, 等. 新型配电系统多层级交直流互联理念、关键技术与发展方向[J]. 电力系统自动化, 2023, 47(6): 2-17. Tang Wei, Zhang Qiming, Zhang Lu, et al.Concept, key technologies and development direction of multilevel AC/DC interconnection in new distribution system[J]. Automation of Electric Power Systems, 2023, 47(6): 2-17. [3] 韩翔宇, 纽春萍, 何海龙, 等. 电磁式断路器状态监测与智能评估技术综述[J]. 电工技术学报, 2023, 38(8): 2191-2210. Han Xiangyu, Niu Chunping, He Hailong, et al.Review of condition monitoring and intelligent assessment of electromagnetic circuit breaker[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2191-2210. [4] 钟建英, 陈刚, 谭盛武, 等. 高压开关设备关键技术及发展趋势[J]. 高电压技术, 2021, 47(8): 2769-2782. Zhong Jianying, Chen Gang, Tan Shengwu, et al.Key technology and development trend of high-voltage switchgear[J]. High Voltage Engineering, 2021, 47(8): 2769-2782. [5] 杨欢, 蔡云旖, 屈子森, 等. 配电网柔性开关设备关键技术及其发展趋势[J]. 电力系统自动化, 2018, 42(7): 153-165. Yang Huan, Cai Yunyi, Qu Zisen, et al.Key techniques and development trend of soft open point for distribution network[J]. Automation of Electric Power Systems, 2018, 42(7): 153-165. [6] 薛士敏, 陈超超, 金毅, 等. 直流配电系统保护技术研究综述[J]. 中国电机工程学报, 2014, 34(19): 3114-3122. Xue Shimin, Chen Chaochao, Jin Yi, et al.A research review of protection technology for DC distribution system[J]. Proceedings of the CSEE, 2014, 34(19): 3114-3122. [7] Kanchi S, Shukla R, Sharma A.Plasma triggered spark gap switch for multiple switch synchronization[J]. The Review of Scientific Instruments, 2020, 91(10): 104704. [8] Liu Shanhong, Liu Xuandong, Shen Xi, et al.Discharge characteristics of a dual-electrode gas switch triggered by ejected plasma in N2 and SF6[J]. IEEE Transactions on Plasma Science, 2017, 45(6): 969-974. [9] 闫家启, 申赛康, 孙国祥, 等. 伪火花放电的物理机制与应用综述[J]. 电工技术学报, 2021, 36(11): 2408-2423. Yan Jiaqi, Shen Saikang, Sun Guoxiang, et al.Review on physical mechanisms and applications of pseudospark discharge[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2408-2423. [10] 董冰冰, 陈子建, 陈维江, 等. 配电网用灵活控制特快速开关方案及其触发导通特性[J]. 高电压技术, 2022, 48(5): 1808-1816. Dong Bingbing, Chen Zijian, Chen Weijiang, et al.Scheme of flexible control very fast switch and its discharge characteristics for distribution network[J]. High Voltage Engineering, 2022, 48(5): 1808-1816. [11] 温伟杰, 李鹏宇, 李斌, 等. 多端口机械式直流断路器的动作策略与参数优化[J]. 电力系统自动化, 2021, 45(11): 86-94. Wen Weijie, Li Pengyu, Li Bin, et al.Operation strategy and parameter optimization of multi-port mechanical DC circuit breaker[J]. Automation of Electric Power Systems, 2021, 45(11): 86-94. [12] 郭兴宇, 黄智慧, 梁德世, 等. 新型机电混合断路器及其电流转移过程分析[J]. 电工技术学报, 2022, 37(24): 6411-6419. Guo Xingyu, Huang Zhihui, Liang Deshi, et al.Analysis on novel electro-mechanical hybrid circuit breaker and its current commutation process[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6411-6419. [13] 李黎, 刘刚, 林福昌, 等. 石墨型高能气体开关的电极使用寿命分析[J]. 中国电机工程学报, 2011, 31(6): 109-115. Li Li, Liu Gang, Lin Fuchang, et al.Analysis on electrode lifetime of high power graphite spark gap switch[J]. Proceedings of the CSEE, 2011, 31(6): 109-115. [14] 郭良福, 李黎, 赖贵友, 等. 石墨型高能两电极气体开关[J]. 强激光与粒子束, 2010, 22(12): 3034-3038. Guo Liangfu, Li Li, Lai Guiyou, et al.High power graphite two-electrode spark gap switch[J]. High Power Laser and Particle Beams, 2010, 22(12): 3034-3038. [15] 曾晗, 林福昌, 蔡礼, 等. 石墨电极烧蚀机理及实验[J]. 电工技术学报, 2013, 28(1): 43-49, 86. Zeng Han, Lin Fuchang, Cai Li, et al.Mechanism and experiment of graphite electrode erosion[J]. Transac-tions of China Electrotechnical Society, 2013, 28(1): 43-49, 86. [16] 李黎, 蔡礼, 鲍超斌, 等. 触发管型气体开关导通时延的分析及估算[J]. 中国电机工程学报, 2012, 32(7): 174-180, 207. Li Li, Cai Li, Bao Chaobin, et al.Analysis and estimation of breakdown delay of gas trigatron switches[J]. Proceedings of the CSEE, 2012, 32(7): 174-180, 207. [17] 蔡礼, 蔡芸, 林福昌, 等. 触发型3电极开关导通时延分析与数值计算[J]. 高电压技术, 2013, 39(3): 727-732. Cai Li, Cai Yun, Lin Fuchang, et al.Analysis and numerical calculation on breakdown time of three-electrode trigatron gap[J]. High Voltage Engineering, 2013, 39(3): 727-732. [18] 王虎, 危瑾, 常家森, 等. 场畸变气体开关寿命预测[J]. 中国电机工程学报, 2011, 31(19): 153-159. Wang Hu, Wei Jin, Chang Jiasen, et al.Lifetime prediction of field-distortion gas switch[J]. Pro-ceedings of the CSEE, 2011, 31(19): 153-159. [19] 李兴文, 贾申利, 张博雅. 气体开关电弧物性参数计算及特性仿真研究与应用[J]. 高电压技术, 2020, 46(3): 757-771. Li Xingwen, Jia Shenli, Zhang Boya.Research and application on physical farameters calculation and behavior simulation of gas switching arc[J]. High Voltage Engineering, 2020, 46(3): 757-771. [20] 王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201-5212. Wang Ping, Gong Qingrui, Zhang Jiang, et al.An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electro-technical Society, 2021, 36(24): 5201-5212. [21] 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287. Yang Shengjie, Luo Bingyang, Wang Jing, et al.State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287. [22] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. Sun Bingxiang, Ren Pengbo, Chen Yuzhe, et al.Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. [23] 赵书涛, 徐晓会, 尹子会, 等. 基于深度学习断路器储能机构故障诊断方法研究[J]. 高压电器, 2022, 58(10): 25-32. Zhao Shutao, Xu Xiaohui, Yin Zihui, et al.Research on fault diagnosis method of charging operating mechanism of circuit breaker based on deep learning[J]. High Voltage Apparatus, 2022, 58(10): 25-32. [24] 谢庆, 张煊宇, 王春鑫, 等. 新一代人工智能技术在输变电设备状态评估中的应用现状及展望[J]. 高压电器, 2022, 58(11): 1-16. Xie Qing, Zhang Xuanyu, Wang Chunxin, et al.Application status and prospect of the new generation artificial intelligence technology in the state evaluation of power transmission and transformation equipment[J]. High Voltage Apparatus, 2022, 58(11): 1-16. [25] 董冰冰, 郭志远, 文韬, 等. 两级沿面触发型气体开关等离子体喷射过程与触发导通规律[J]. 高电压技术, 2022, 48(11): 4656-4666. Dong Bingbing, Guo Zhiyuan, Wen Tao, et al.Development process of jet plasma of two-stage surface-triggered gas switch and its trigger conduction law[J]. High Voltage Engineering, 2022, 48(11): 4656-4666. [26] Dong Bingbing, Guo Zhiyuan, Zhang Zelin, et al.Numerical simulation and experimental verification of plasma jet development in gas gap switch[J]. Plasma Science and Technology, 2023, 25(5): 055505. [27] 董冰冰, 陶磊, 李志兵, 等. 机械式直流断路器换流支路用气体间隙开关方案及其诱导击穿特性[J]. 高电压技术, 2022, 48(12): 4863-4872. Dong Bingbing, Tao Lei, Li Zhibing, et al.A gas gap switch scheme for commutation branch of DC circuit breakers and its induced breakdown characteristics[J]. High Voltage Engineering, 2022, 48(12): 4863-4872. [28] Zhao Xiangen, He Junjia, Luo Bing, et al.Relaxation process of the discharge channel near the anode in long air gaps under positive impulse voltages[J]. Journal of Physics D: Applied Physics, 2017, 50(48): 485206. [29] Yang Ren, Xu Mengyuan, Yan Jing, et al.Decomposition characteristics of SF6 under arc discharge and the effects of trace H2O, O2, and PTFE vapour on its by-products[J]. Energies, 2021, 14(2): 414. [30] Xu Mengyuan, Yan Jing, Yang Minghao, et al.Theoretical study of the chemical reaction mechanisms and reaction rates of CFx+ SFy (where x = 1-3 and y = 1-6) in SF6-polytetrafluoroethylene arc plasma[J]. Journal of Applied Physics, 2019, 126(19): 193304. [31] Wang Dong, Miao Qiang, Kang Rui.Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition[J]. Journal of Sound and Vibration, 2009, 324(3/4/5): 1141-1157. [32] 周二彪, 孙阳, 谭捷, 等. 面向新能源消纳的电网互联通道规划[J]. 高电压技术, 2020, 46(8): 2933-2940. Zhou Erbiao, Sun Yang, Tan Jie, et al.Network interconnection channel planning for new energy consumption[J]. High Voltage Engineering, 2020, 46(8): 2933-2940. [33] Ren Lei, Dong Jiabao, Wang Xiaokang, et al.A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3478-3487. [34] Srivastava N, Hinton G E, Krizhevsky A, et al.Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [35] Saito K, Ushiku Y, Harada T, et al.Adversarial dropout regularization[C]//6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 2018: 1-15. [36] 刘树鑫, 高士珍, 刘洋, 等. 基于LSTM的交流接触器剩余寿命预测[J]. 高电压技术, 2022, 48(8): 3210-3220. Liu Shuxin, Gao Shizhen, Liu Yang, et al.Residual life prediction of AC contactor based on long short-term memory[J]. High Voltage Engineering, 2022, 48(8): 3210-3220.