Operation Optimization Considering Unit Recovery Effect when Concentrating Solar Power Station Acts as Black-Start Power Source
Meng Rongtao1, Li Shaoyan1, Gu Xueping1, Liu Yan1, Sun Yongzhao2
1. School of Electrical & Electronic Engineering North China Electric Power University Baoding 071003 China;; 2. Xingtai Power Supply Branch of State Grid Hebei Electric Power Co. Ltd Xingtai 054001 China
Abstract:Concentrating solar power (CSP) is a renewable energy power generation technology that integrates heat storage and electricity generation. CSP power station is equipped with large capacity long-term energy storage device, which can realize energy time shift. In some areas that lack traditional black-start power source but have abundant lighting resources, CSP power station will become an ideal black-start power source. However, the operation mode of increasing the output power of CSP power station by absorbing excess light energy will reduce the reliability of system power supply capacity recovery, and is not suitable for power system recovery scenarios. Therefore, the operation optimization of CSP power station that participates in the power system unit recovery as a black-start power source is studied in the paper. The number of steps required for the output power of grid connected units to climb to the minimum technical output is used as a representation of unit recovery effect, and a CSP power station operation optimization method considering unit recovery effect is proposed in the paper. Firstly, considering the thermal storage level requirement of CSP power station as a black-start power source and the coordination relationship between the output power of CSP power station and the climbing output of grid connected units, a bi-level optimization model of CSP power station supporting power system unit recovery is established; Then, a bi-level optimization solution framework is developed for the model. The outer level is the power system unit recovery model to obtain the power system unit recovery information and the power output of the CSP power station; The inner level is the CSP power station operation optimization model that takes into account the unit recovery effect to solve the operation status of the CSP power station. Finally, the proposed method is verified in the improved IEEE39 bus system with CSP power station. The results indicate that the method can fully utilize the flexibility of CSP power station and effectively support the recovery process of power system units. Setting power output thresholds for CSP power station during DNI sufficient period can reduce the number of time steps required to increase the output of some grid connected units to the minimum technical output. It can improve the reliability of system power supply capacity recovery and increase the comprehensive effect of black-start operation of CSP power station. The following conclusions can be drawn from the results analysis: The thermal storage system (TES) is an important component of CSP power station to achieve energy time shift and serve as a black-start power source. The CSP power station can improve its ability to serve the emergency recovery of the power system by setting a reasonable lower limit for heat storage. The TES can enable CSP power station to quickly self-start and provide sufficient electrical power support for the initial recovery of the power system. The energy storage capacity configuration of the TES has a significant impact on the climbing of grid connected units, and improving the energy storage capacity configuration can effectively reduce the amount of abandoned light energy during the power system recovery period.
孟荣涛, 李少岩, 顾雪平, 刘艳, 孙永昭. 光热电站作为黑启动电源时计及机组恢复效益的运行优化[J]. 电工技术学报, 2023, 38(13): 3486-3498.
Meng Rongtao, Li Shaoyan, Gu Xueping, Liu Yan, Sun Yongzhao. Operation Optimization Considering Unit Recovery Effect when Concentrating Solar Power Station Acts as Black-Start Power Source. Transactions of China Electrotechnical Society, 2023, 38(13): 3486-3498.
[1] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. Shu Yinbiao, Chen Guoping, He Jingbo, et al.Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. [2] 顾雪平, 白岩松, 李少岩, 等. 电力系统黑启动恢复问题的研究评述[J]. 电工技术学报, 2022, 37(13): 3183-3200. Gu Xueping, Bai Yansong, Li Shaoyan, et al.Research review of power system black-start restoration[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3183-3200. [3] 孙传文. “12.28”墨西哥大停电事故的分析及其对我国电网运行的启示及建议[J]. 电气时代, 2021(9): 44-46. Sun Chuanwen.Analysis of “12.28” Mexican blackout accident and its enlightenment and suggestions to China’s power grid operation[J]. Electric Age, 2021(9): 44-46. [4] 王伟胜, 林伟芳, 何国庆, 等. 美国得州2021年大停电事故对我国新能源发展的启示[J]. 中国电机工程学报, 2021, 41(12): 4033-4043. Wang Weisheng, Lin Weifang, He Guoqing, et al.Enlightenment of 2021 texas blackout to the renewable energy development in China[J]. Proceedings of the CSEE, 2021, 41(12): 4033-4043. [5] 陈国庆. 大型水力发电厂黑启动研究[J]. 电力系统自动化, 2003, 27(10): 95-97. Chen Guoqing.Study on black start of large hydroelectric power plant[J]. Automation of Electric Power Systems, 2003, 27(10): 95-97. [6] 万雄彪, 陈晶, 吴水军. 水电厂黑启动关键技术研究[J]. 云南电力技术, 2021, 49(5): 54-57. Wan Xiongbiao, Chen Jing, Wu Shuijun.Research on key technology of black start in hydropower plant[J]. Yunnan Electric Power, 2021, 49(5): 54-57. [7] 林济铿, 么莉, 孟宪朋, 等. 天津电网黑启动试验研究[J]. 电网技术, 2008, 32(5): 55-58. Lin Jikeng, Yao Li, Meng Xianpeng, et al.Test research of black start of Tianjin power grid[J]. Power System Technology, 2008, 32(5): 55-58. [8] 吴涛, 郭嘉阳, 李华伟. 华北电网利用十三陵抽水蓄能电厂水电机组进行黑启动的试验研究[J]. 电网技术, 2001, 25(3): 56-58. Wu Tao, Guo Jiayang, Li Huawei.Investigation of black start for North China power system by Shisanling hydroelectric generating sets[J]. Power System Technology, 2001, 25(3): 56-58. [9] Kalantar M, Mousavi G S M. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage[J]. Applied Energy, 2010, 87(10): 3051-3064. [10] 李新军, 杨超, 顾雪平, 等. 柴油发电机辅助的风电场黑启动过程及频率控制[J]. 电网技术, 2018, 42(6): 1853-1859. Li Xinjun, Yang Chao, Gu Xueping, et al.Study on black-start process and frequency control of wind farms assisted with diesel generator[J]. Power System Technology, 2018, 42(6): 1853-1859. [11] 刘建坤, 崔文琪, 汪成根, 等. 不确定环境条件下光伏储能系统作为电网黑启动电源的可行性分析[J]. 南方电网技术, 2016, 10(8): 82-88. Liu Jiankun, Cui Wenqi, Wang Chenggen, et al.Feasibility analysis on using photovoltaic system with battery as black-start unit under uncertain environment[J]. Southern Power System Technology, 2016, 10(8): 82-88. [12] Chen Runze, Guo Qinglai, Li Zhigang, et al.Reducing generation uncertainty by integrating CSP with wind power: an adaptive robust optimization-based analysis[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 583-594. [13] 崔杨, 张家瑞, 仲悟之, 等. 计及电热转换的含储热光热电站与风电系统优化调度[J]. 中国电机工程学报, 2020, 40(20): 6482-6493. Cui Yang, Zhang Jiarui, Zhong Wuzhi, et al.Optimal scheduling of concentrating solar power plant with thermal energy storage and wind farm considering electric-thermal conversion[J]. Proceedings of the CSEE, 2020, 40(20): 6482-6493. [14] He Guannan, Chen Qixin, Kang Chongqing, et al.Optimal offering strategy for concentrating solar power plants in joint energy, reserve and regulation markets[J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1245-1254. [15] Xu Ti, Zhang Ning.Coordinated operation of concentrated solar power and wind resources for the provision of energy and reserve services[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1260-1271. [16] 赖林琛, 周强, 杜文娟, 等. 同型光热发电机并联聚合对光热发电场振荡稳定性影响[J]. 电工技术学报, 2022, 37(1): 179-191, 231. Lai Linchen, Zhou Qiang, Du Wenjuan, et al.Impact of dynamic aggregation of same concentrating solar power generators in parallel connection on the oscillation stability of a CSP plant[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 179-191, 231. [17] 冯陈佳, 邵成成, 王雅楠, 等. 考虑启动热量约束的光热机组优化运行模型[J]. 电力系统自动化, 2019, 43(13): 29-35. Feng Chenjia, Shao Chengcheng, Wang Yanan, et al.Optimal operation model of concentrating solar power units considering startup heat constraints[J]. Automation of Electric Power Systems, 2019, 43(13): 29-35. [18] Du Ershun, Zhang Ning, Hodge B M, et al.The role of concentrating solar power toward high renewable energy penetrated power systems[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6630-6641. [19] 车泉辉, 娄素华, 吴耀武, 等. 计及条件风险价值的含储热光热电站与风电电力系统经济调度[J]. 电工技术学报, 2019, 34(10): 2047-2055. Che Quanhui, Lou Suhua, Wu Yaowu, et al.Economic dispatching for power system of concentrated solar power plant with thermal energy storage and wind power considering conditional value-at-risk[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2047-2055. [20] Du Ershun, Zhang Ning, Hodge B M, et al.Operation of a high renewable penetrated power system with CSP plants: a look-ahead stochastic unit commitment model[J]. IEEE Transactions on Power Systems, 2019, 34(1): 140-151. [21] 张尧翔, 刘文颖, 庞清仑, 等. 高比例风电接入系统光热发电-火电旋转备用优化方法[J]. 电工技术学报, 2022, 37(21): 5478-5489. Zhang Yaoxiang, Liu Wenying, Pang Qinglun, et al.Optimization method of photothermal power generation-thermal power rotating standby for high proportion wind power access system[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5478-5489. [22] 贠韫韵, 张大海, 王小君, 等. 考虑光热电站及富氧燃烧捕集技术的电热气综合能源系统低碳运行优化[J/OL]. 电工技术学报, 2023[2023-04-04]. DOI: 10.19595/j.cnki.1000-6753.tces.221732. Yun Yunyun, Zhang Dahai, Wang Xiaojun, et al. Low-carbon operational optimization of integrated electricity-heat-gas energy system considering concentrating solar power plant and oxygen-enriched combustion capture technology[J/OL]. Transactions of China Electrotechnical Society, 2023[2023-04-04]. DOI:10.19595/j.cnki.1000-6753.tces. 221732. [23] 孙骁强, 汪莹, 李庆海, 等. 新型电力系统中光热电站完全替代火电规划研究[J]. 电网技术, 2022, 46(8): 2948-2954. Sun Xiaoqiang, Wang Ying, Li Qinghai, et al.Planning of solar thermal power station completely replacing thermal power in new power system[J]. Power System Technology, 2022, 46(8): 2948-2954. [24] 杜尔顺, 张宁, 康重庆, 等. 太阳能光热发电并网运行及优化规划研究综述与展望[J]. 中国电机工程学报, 2016, 36(21): 5765-5775, 6019. Du Ershun, Zhang Ning, Kang Chongqing, et al.Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J]. Proceedings of the CSEE, 2016, 36(21): 5765-5775, 6019. [25] 孙永昭. 兼顾黑启动服务的光热电站运行方式协调优化[D]. 北京: 华北电力大学, 2022. [26] 李少岩, 孙永昭, 顾雪平, 等. 计及恢复效果的光热电站黑启动服务定价方法[J]. 华北电力大学学报(自然科学版), 2022, 49(4): 33-42. Li Shaoyan, Sun Yongzhao, Gu Xueping, et al.Restoration effect based pricing method for black-start service of concentrating solar power plants[J]. Journal of North China Electric Power University (Natural Science Edition), 2022, 49(4): 33-42. [27] 刘嘉诚, 刘俊, 赵宏炎, 等. 基于DKDE与改进mRMR特征选择的短期光伏出力预测[J]. 电力系统自动化, 2021, 45(14): 13-21. Liu Jiacheng, Liu Jun, Zhao Hongyan, et al.Short-term photovoltaic output forecasting based on diffusion kernel density estimation and improved max-relevance and min-redundancy feature selection[J]. Automation of Electric Power Systems, 2021, 45(14): 13-21. [28] 雷宇, 杨明, 韩学山. 基于场景分析的含风电系统机组组合的两阶段随机优化[J]. 电力系统保护与控制, 2012, 40(23): 58-67. Lei Yu, Yang Ming, Han Xueshan.A two-stage stochastic optimization of unit commitment considering wind power based on scenario analysis[J]. Power System Protection and Control, 2012, 40(23): 58-67. [29] 钟慧荣. 电力系统黑启动与网架重构优化技术研究[D]. 北京: 华北电力大学, 2012. [30] 刘艳, 叶茂, 顾雪平, 等. 高比例可再生能源电力系统的黑启动服务定价方法[J]. 电力系统自动化, 2020, 44(21): 145-155. Liu Yan, Ye Mao, Gu Xueping, et al.Pricing method for black-start service of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(21): 145-155. [31] 刘玉田, 王洪涛, 叶华. 电力系统恢复理论与技术[M]. 北京: 科学出版社, 2014. [32] 陈小平, 顾雪平. 基于遗传模拟退火算法的负荷恢复计划制定[J]. 电工技术学报, 2009, 24(1): 171-175, 182. Chen Xiaoping, Gu Xueping.Determination of the load restoration plans based on genetic simulated annealing algorithms[J]. Transactions of China Electrotechnical Society, 2009, 24(1): 171-175, 182. [33] 董金哲. 网架重构阶段的协调恢复策略及其安全控制方法[D]. 北京: 华北电力大学, 2016.