电工技术学报  2022, Vol. 37 Issue (17): 4528-4536    DOI: 10.19595/j.cnki.1000-6753.tces.211069
电能存储与应用 |
基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计
李宁1, 何复兴1, 马文涛1, 蒋林2, 张小平3
1.西安理工大学电气工程学院 西安 710048;
2.利物浦大学电气工程和电子系 利物浦 英国 L69 3GJ;
3.伯明翰大学电子、电气和系统工程系 伯明翰 英国 B15 2TT
State-of-Charge Estimation of Lithium-Ion Battery Based on Gated Recurrent Unit Using Empirical Mode Decomposition
Li Ning1, He Fuxing1, Ma Wentao1, Jiang Lin2, Zhang Xiaoping3
1. School of Electrical Engineering Xi'an University of Technology Xi'an 710048 China;
2. Department of Electrical Engineering and Electronics University of Liverpool Liverpool L69 3GJ United Kingdom;
3. Department of Electronics, Electrical and Systems Engineering University of Birmingham Birmingham B15 2TT United Kingdom
全文: PDF (2197 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 锂离子电池荷电状态(SOC)估计技术是电动汽车电池监测系统(BMS)设计的重要组成部分。该文提出一种基于经验模态分解(EMD)的门控循环单元(GRU)神经网络的锂离子电池荷电状态估计方法,在GRU估计SOC的基础上,引入EMD算法分解放电电流,不仅提高GRU模型对长时间电流信号保持长期信息的能力,而且提高锂离子电池荷电状态估计精度。仿真实验表明,与传统的循环神经网络和长短期记忆网络相比,该文所提基于EMD-GRU方法的锂离子电池SOC估计平均绝对误差为1.509 3%,同比降低了20.792 4%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李宁
何复兴
马文涛
蒋林
张小平
关键词 锂离子电池荷电状态估计门控循环单元经验模态分解    
Abstract:State of charge (SOC) estimation technology of lithium-ion battery is an important part of the battery management system (BMS) design of electric vehicles. In this paper, an SOC estimation method for lithium-ion batteries based on gated recurrent unit (GRU) using empirical mode decomposition (EMD) is proposed. The EMD algorithm is introduced to decompose the discharge current, based on the GRU estimation of the SOC, which not only improves the ability of the GRU model to maintain long-term information for long-term current signals, but also betters the accuracy of SOC estimation of lithium-ion battery. Simulation experiments show that, compared with the traditional recurrent neural network and long-term and short-term memory network, the EMD-GRU method proposed in this paper displays the average absolute error of the lithium-ion battery SOC estimation is 1.509 3%, a year-on-year decrease of 20.792 4%.
Key wordsLithium-ion battery    state-of-charge estimation    gated recurrent unit    empirical mode decomposition   
收稿日期: 2021-06-19     
PACS: TM912  
基金资助:国家自然科学基金(51507140)、国家留学基金委国际清洁能源拔尖人才项目([2018]5046, [2019]157)、江苏省配电网智能技术与装备协同创新中心开放基金项目(XTCX202007)资助
通讯作者: 李 宁 男,1983年生,博士,副教授,研究方向为电力电子化的电力系统及其控制。E-mail:lining83@xaut.edu.cn   
作者简介: 何复兴 男,1995年生,硕士研究生,研究方向为锂离子电池SOC估计。E-mail:2180320030@stu.xaut.edu.cn
引用本文:   
李宁, 何复兴, 马文涛, 蒋林, 张小平. 基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计[J]. 电工技术学报, 2022, 37(17): 4528-4536. Li Ning, He Fuxing, Ma Wentao, Jiang Lin, Zhang Xiaoping. State-of-Charge Estimation of Lithium-Ion Battery Based on Gated Recurrent Unit Using Empirical Mode Decomposition. Transactions of China Electrotechnical Society, 2022, 37(17): 4528-4536.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.211069          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I17/4528