State-of-Charge Estimation of Lithium-Ion Battery Based on Gated Recurrent Unit Using Empirical Mode Decomposition
Li Ning1, He Fuxing1, Ma Wentao1, Jiang Lin2, Zhang Xiaoping3
1. School of Electrical Engineering Xi'an University of Technology Xi'an 710048 China; 2. Department of Electrical Engineering and Electronics University of Liverpool Liverpool L69 3GJ United Kingdom; 3. Department of Electronics, Electrical and Systems Engineering University of Birmingham Birmingham B15 2TT United Kingdom
Abstract:State of charge (SOC) estimation technology of lithium-ion battery is an important part of the battery management system (BMS) design of electric vehicles. In this paper, an SOC estimation method for lithium-ion batteries based on gated recurrent unit (GRU) using empirical mode decomposition (EMD) is proposed. The EMD algorithm is introduced to decompose the discharge current, based on the GRU estimation of the SOC, which not only improves the ability of the GRU model to maintain long-term information for long-term current signals, but also betters the accuracy of SOC estimation of lithium-ion battery. Simulation experiments show that, compared with the traditional recurrent neural network and long-term and short-term memory network, the EMD-GRU method proposed in this paper displays the average absolute error of the lithium-ion battery SOC estimation is 1.509 3%, a year-on-year decrease of 20.792 4%.
李宁, 何复兴, 马文涛, 蒋林, 张小平. 基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计[J]. 电工技术学报, 2022, 37(17): 4528-4536.
Li Ning, He Fuxing, Ma Wentao, Jiang Lin, Zhang Xiaoping. State-of-Charge Estimation of Lithium-Ion Battery Based on Gated Recurrent Unit Using Empirical Mode Decomposition. Transactions of China Electrotechnical Society, 2022, 37(17): 4528-4536.
[1] 温法政. 锂离子动力电池高精度建模与多状态智能估计[D]. 济南: 山东大学, 2020. [2] 孙国强, 任佳琦, 成乐祥, 等. 基于分数阶阻抗模型的磷酸铁锂电池荷电状态估计[J]. 电力系统自动化, 2018, 42(23): 57-63. Sun Guoqiang, Ren Jiaqi, Cheng Lexiang, et al.State of charge estimation of LiFePO4 battery based on fractional-order impedance model[J]. Automation of Electric Power Systems, 2018, 42(23): 57-63. [3] 费亚龙, 谢长君, 汤泽波, 等. 基于平方根无迹卡尔曼滤波的锂电池状态估计[J]. 中国电机工程学报, 2017, 37(15): 4514-4520, 4593. Fei Yalong, Xie Changjun, Tang Zebo, et al.State-of-charge estimation based on square root unscented Kalman filter algorithm for Li-ion batteries[J]. Proceedings of the CSEE, 2017, 37(15): 4514-4520, 4593. [4] Chen Lin, Wang Zhengzheng, Lü Zhiqiang, et al.A novel state-of-charge estimation method of lithium-ion batteries combining the grey model and genetic algorithms[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8797-8807. [5] Meng Jinhao, Stroe D I, Ricco M, et al.A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717-7727. [6] 杨亚丽, 李匡成, 陈涛, 等. 采用电动势-内阻模型在线估计蓄电池荷电状态[J]. 电测与仪表, 2010, 47(3): 16-19, 37. Yang Yali, Li Kuangcheng, Chen Tao, et al.Introducing the model of electromotive force-impedance estimating the SOC of battery on line[J]. Electrical Measurement & Instrumentation, 2010, 47(3): 16-19, 37. [7] 刘芳, 马杰, 苏卫星, 等. 基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法[J]. 电工技术学报, 2020, 35(4): 698-707. Liu Fang, Ma Jie, Su Weixing, et al.State of charge estimation method of electric vehicle power battery life cycle based on auto regression extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 698-707. [8] 王榘, 熊瑞, 穆浩. 温度和老化意识融合驱动的电动车辆锂离子动力电池电量和容量协同估计[J]. 电工技术学报, 2020, 35(23): 4980-4987. Wang Ju, Xiong Rui, Mu Hao.Co-estimation of lithium-ion battery state-of-charge and capacity through the temperature and aging awareness model for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4980-4987. [9] 魏克新, 陈峭岩. 基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计[J]. 中国电机工程学报, 2014, 34(3): 445-452. Wei Kexin, Chen Qiaoyan.States estimation of Li-ion power batteries based on adaptive unscented Kalman filters[J]. Proceedings of the CSEE, 2014, 34(3): 445-452. [10] Ragone M, Yurkiv V, Ramasubramanian A, et al.Data driven estimation of electric vehicle battery state-of-charge informed by automotive simulations and multi-physics modeling[J]. Journal of Power Sources, 2021, 483: 229108. [11] 刘兴涛, 李坤, 武骥, 等. 基于EKF-SVM算法的动力电池SOC估计[J]. 汽车工程, 2020, 42(11): 1522-1528, 1544. Liu Xingtao, Li Kun, Wu Ji, et al.State of charge estimation for traction battery based on EKF-SVM algorithm[J]. Automotive Engineering, 2020, 42(11): 1522-1528, 1544. [12] 孔祥创, 赵万忠, 王春燕. 基于BP-EKF算法的锂电池SOC联合估计[J]. 汽车工程, 2017, 39(6): 648-652. Kong Xiangchuang, Zhao Wanzhong, Wang Chunyan.Co-estimation of lithium battery SOC based on BP-EKF algorithm[J]. Automotive Engineering, 2017, 39(6): 648-652. [13] Hu Xiaosong, Li Shengbo, Peng Huei, et al.Robustness analysis of state-of-charge estimation methods for two types of Li-ion batteries[J]. Journal of Power Sources, 2012, 217: 209-219. [14] Tian Yong, Lai Rucong, Li Xiaoyu, et al.A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789. [15] Yang Fangfang, Zhang Shaohui, Li Weihua, et al.State-of-charge estimation of lithium-ion batteries using LSTM and UKF[J]. Energy, 2020, 201: 117664. [16] Yang Fangfang, Li Weihua, Li Chuan, et al.State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175: 66-75. [17] 李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9): 2051-2062. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.A hybrid approach to lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2051-2062. [18] 李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681-692. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681-692. [19] 刘昊天, 王萍, 程泽. 一种编解码器模型的锂离子电池健康状态估算[J]. 中国电机工程学报, 2021, 41(5): 1851-1860. Liu Haotian, Wang Ping, Cheng Ze.A novel method based on encoder-decoder framework for Li-ion battery state of health estimation[J]. Proceedings of the CSEE, 2021, 41(5): 1851-1860. [20] 金秀章, 刘岳, 于静, 等. 基于变量选择和EMD-LSTM网络的出口SO2浓度预测[J]. 中国电机工程学报, 2021, 41(24): 8475-8484. Jin Xiuzhang, Liu Yue, Yu Jing, et al.Prediction of outlet SO2 concentration based on variable selection and EMD-LSTM network[J]. Proceedings of the CSEE, 2021, 41(24): 8475-8484. [21] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. Pang Hui, Guo Long, Wu Longxing, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189.