Finite Element Analysis for the Influence of Clamp on the Thermal Characteristics of High Voltage Insulated Power Cable
Lü Anqiang1,2, Li Jing3, Zhang Zhenpeng4, Song He1, Lin Xiaobo5
1. Department of Electronic and Communication Engineering North China Electric Power University Baoding 071003 China;
2. Hebei Key Laboratory of Power Internet of Things Technology North China Electric Power University Baoding 071003 China;
3. Department of Computer North China Electric Power University Baoding 071003 China;
4. China Electric Power Research Institute Wuhan 430074 China;
5. State Grid Zhoushan Electric Power Supply Company of Zhejiang Power Corporation Zhoushan 316021 China
The clamp is an essential component of the installed high-voltage insulated cable. In order to obtain the influence of clamp on the thermal characteristics of the cable, the electrothermic coupling finite element analysis is carried out on a typical 220kV AC single core XLPE insulated cable. According to the actual situation of cable laying in a certain city in China, the two dimensional and three dimensional electrothermal coupling finite element models of the cable under five different material clamps are established. The ampacity ratings and thermal time constants of the cable under different clamps are obtained through steady-state and transient thermodynamic calculation. The distribution law of conductor temperature in radial and axial directions is obtained by calculating the cable temperature under different clamp materials and intervals, and the relation function of the clamp material and interval with the cable conductor temperature is obtained. The results show that the material and interval of the clamps have an effect on the cable's ampacity ratings and thermal time constant. There is a critical value for the thermal conductivity and interval of the clamp, and the conductor temperature on both sides of this value varies greatly. This paper can provide theoretical and data support for cable construction and operation.
吕安强, 李静, 张振鹏, 宋贺, 林晓波. 夹具对高压绝缘电缆热学特性影响的有限元分析[J]. 电工技术学报, 2022, 37(1): 283-290.
Lü Anqiang, Li Jing, Zhang Zhenpeng, Song He, Lin Xiaobo. Finite Element Analysis for the Influence of Clamp on the Thermal Characteristics of High Voltage Insulated Power Cable. Transactions of China Electrotechnical Society, 2022, 37(1): 283-290.
[1] 谢声益, 杨帆, 黄鑫, 等. 基于太赫兹时域光谱技术的交联聚乙烯电缆绝缘层气隙检测分析[J]. 电工技术学报, 2020, 35(12): 2698-2707.
Xie Shengyi, Yang Fan, Huang Xin, et al. Air gap detection and analysis of XLPE cable insulation based on terahertz time domain spectroscopy[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(12): 2698-2707.
[2] 黄光磊, 李喆, 杨丰源, 等. 直流交联聚乙烯电缆泄漏电流试验特性研究[J]. 电工技术学报, 2019, 34(1): 192-201.
Huang Guanglei, Li Zhe, Yang Fengyuan, et al. Experimental research on leakage current of DC cross linked polyethylene cable[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 192-201.
[3] 王鹤, 李兴宝, 路俊海, 等. 基于叠加原理的光纤复合低压电缆热路模型建模[J]. 电工技术学报, 2019, 34(7): 1381-1391.
Wang He, Li Xingbao, Lu Junhai, et al. Modeling method of OPLC thermal circuit model based on superposition principle[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1381-1391.
[4] 林晨炯, 林珍, 吴雅琳.电缆接头温度在线监测方法研究综述[J]. 电气技术, 2019, 20(5): 1-4, 9.
Lin Chenjiong, Lin Zhen, Wu Yalin.Summary of research on online monitoring method of cable joint temperature[J]. Electrical Engineering, 2019, 20(5): 1-4, 9.
[5] Benato R, Dambone S S, Forzan M, et al. Core laying pitch-long 3D finite element model of an AC three-core armoured submarine cable with a length of 3 metres[J]. Electric Power Systems Research, 2017, 150: 137-143.
[6] Juan Carlos Del-Pino-López, Hatlo M, Cruz-Romero P.On simplified 3D finite element simulations of three-core armored power cables[J]. Energies, 2018, 11(11): 3018.
[7] Lü Anqiang, Li Jing, Li Yongqian.Research on strain and temperature measurement of OPGW based on BOTDR[C]//International Conference on Optical Instru- ments and Technology: Optical Sensors and Appli- cations, Beijing, China, 2013: 90441H-1-90441H-7.
[8] Vollaro R D L, Fontana L, Vallati A.Thermal analysis of underground electrical power cables buried in non-homogeneous soils[J]. Applied Thermal Engineering, 2011, 31(5): 772-778.
[9] IEC 60287-1-1-1994 Calculation of the current rating of electric cables, part 1: current rating equations (100% load factor) and calculation of losses, section 1: general[S]. London, 1994.
[10] IEC 60287-1-2-1993 Calculation of the current rating of electric cables, part 1: current rating equations (100% load factor) and calculation of losses, section 2: sheath eddy current loss factor for two circuits in flat formation[S]. Switzerland, 1993.
[11] IEC 60287-2-1-1994 Calculation of the current rating of electric cables, part 2: thermal resistance, section 1: calculation of thermal resistance[S]. London, 1994.
[12] 林晓波, 何旭涛, 陈国志, 等. 三芯光纤复合海底电缆超负荷运行有限元建模[J]. 光通信研究, 2018(1): 23-26.
Lin Xiaobo, He Xutao, Chen Guozhi, et al. Finite element modeling of overload operation of three-core fiber composite submarine cable[J]. Study on Optical Communications, 2018(1): 23-26.
[13] 李昭红.高压直流XLPE绝缘电缆中间接头电热耦合仿真研究和稳态载流量计算[D]. 广州: 华南理工大学, 2016.
[14] 张洪麟, 唐军, 陈伟根, 等. 基于有限元法的地下电缆群温度场及载流量的仿真计算[J]. 高压电器, 2010, 34(3): 42-45,51.
Zhang Honglin, Tang Jun, Chen Weigen, et al. Simulation calculation of temperature field and current carrying capacity of underground cable group based on finite element method[J]. High Voltage Apparatus, 2010, 34(3): 42-45, 51.
[15] 梁永春, 闫彩红, 赵静, 等. 排管敷设电缆群暂态温度场和短时载流量数值计算[J]. 高电压技术, 2011, 37(4): 1002-1007.
Liang Yongchun, Yan Caihong, Zhao Jing, et al. Numerical calculation of transient temperature field and short-time current carrying capacity of cable- laying cable group[J]. High Voltage Engineering, 2011, 37(4): 1002-1007.
[16] 张尧, 周鑫, 牛海清, 等. 单芯电缆热时间常数的理论计算与试验研究[J]. 高电压技术, 2009, 35(11): 2801-2806.
Zhang Yao, Zhou Xin, Niu Haiqing, et al. Theoretical calculation and experimental research on thermal time constant of single-core cables[J]. High Voltage Engineering, 2009, 35(11): 2801-2806.
[17] Ocloń P, Cisek P, Pilarczyk M, et al. Numerical simulation of heat dissipation processes in under- ground power cable system situated in thermal backfill and buried in a multilayered soil[J]. Energy Conversion and Management, 2015, 95: 352-370.
[18] 吕安强, 寇欣, 尹成群, 等. 三芯海底电缆中复合光纤与导体温度关系建模[J]. 电工技术学报, 2016, 31(18): 59-65.
Lü Anqiang, Kou Xin, Yin Chengqun, et al. Modeling of the relationship between composite fiber and conductor temperature in a three-core submarine cable[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 59-65.
[19] Lü Anqiang, Li Jing.On-line monitoring system of 35kV 3-core submarine power cable based on φ-OTDR[J]. Sensors & Actuators A Physical, 2018, 273: 134-139.