Abstract:Wet flashover and pollution flashover on the surface of insulation material will bring hidden dangers to the safety of power systems. Hydrophobic modification with low-temperature plasma can reduce the wetting of water on the surface of the insulation material, inhibit the adsorption of dirt and dust, and improve its resistance to flashover such as wet flashover and pollution flashover.To achieve this goal, hydrophobic precursor can be added to the discharge gas, and hydrophobic groups can be introduced on the surface of the material to improve the hydrophobicity. In this paper, hexamethyldisiloxane (HMDSO) is added as hydrophobic precursor in Ar dielectric barrier discharge (DBD), and influences of HMDSO addition ratio on optical and electrical discharge characteristics are studied under high frequency, microsecond pulse and nanosecond pulse power source, respectively. Results show that DBD driven by different power sources all present filamentary discharge mode, and bright discharge filaments appear driven by nanosecond pulse source. The discharge uniformity is improved due to the addition of HMDSO. Driven by high frequency and microsecond pulse power source, the addition of HMDSO causes the discharge current and the emission spectrum intensity to decrease. The discharge current and emission spectrum intensity first increase and then decrease excited by nanosecond pulse power source. When the addition ratio is 1.5%, the discharge current and emission spectrum are the largest. The equivalent circuit model is used to calculate the corresponding discharge energy efficiency. The efficiency of high frequency DBD is the lowest, about 20%, and the efficiency of nanosecond pulse DBD is the highest, about 70%. The addition of HMDSO has no obvious effect on the efficiency. Comparing three types of power sources, the nanosecond pulse power source has the largest discharge intensity and energy efficiency, and has stronger ability to generate active particles with proper HMDSO ratio, which can provide more favorable conditions for hydrophobic modification.
张龙龙, 崔行磊, 刘峰, 方志. 不同类型电源激励下HMDSO添加比例对Ar介质阻挡放电特性的影响[J]. 电工技术学报, 2021, 36(15): 3135-3146.
Zhang Longlong, CuiXinglei, Liu Feng, Fang Zhi. Effect of HMDSO Addition Ratio on ArDBD CharacteristicsExcited by Different Types of Power Sources. Transactions of China Electrotechnical Society, 2021, 36(15): 3135-3146.
[1] 胡多, 任成燕, 孔飞, 等. 表面粗糙度对聚合物材料真空沿面闪络特性的影响[J]. 电工技术学报, 2019, 34(16): 3512-3521. Hu Duo, Ren Chengyan, Kong Fei, et al.The effect of surface roughness on the vacuum surface flashover characteristics of polymer materials[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3512-3521. [2] 律方成, 詹振宇, 张立国, 等. 等离子体氟化改性微米AlN填料对环氧树脂绝缘性能的影响[J]. 电工技术学报, 2019, 34(16): 3522-3532. LüFangcheng, Zhan Zhenyu, Zhang Liguo, et al. The effect of plasma fluorination modified micron AlN filler on the insulation properties of epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3522-3532. [3] 张迅, 曾华荣, 田承越, 等. 大气压等离子体制备超疏水表面及其防冰抑霜研究[J]. 电工技术学报, 2019, 34(24): 5289-5296. Zhang Xun, Zeng Huarong, Tian Chengyue, et al.Atmospheric pressure plasma preparation of superhydrophobic surface and its anti-icing and frost suppression research[J]. Transactions of ChinaElectrotechnicalSociety, 2019, 34(24): 5289-5296. [4] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J].中国电机工程学报,2020,40(4): 1339-1358. Mei Danhua, Fang Zhi, Shao Tao.Research status of characteristics and application of atmospheric pressure low temperature plasma[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358. [5] Brandenburg R.Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments[J]. Plasma Sources Science and Technology, 2017, 26(5): 053001. [6] Gebken T, Rüdiger Sachs, Markus Kühn, et al.Effect of atmospheric pressure plasma treatment of glass fibers on the composite strength of endless fiber-reinforced injection molded components[J]. Key Engineering Materials, 2019, 801(5): 251-257. [7] FangZhi, Liu Yuan, Liu Kun, et al. Surface modifications of polymethylmetacrylate films using atmospheric pressure air dielectric barrier discharge plasma[J]. Vacuum, 2012, 86(9): 1305-1312. [8] 詹振宇, 阮浩鸥, 律方成, 等.等离子体氟化改性环氧树脂及其在C4F7N/CO2混合气体中电气性能研究[J].电工技术学报, 2020, 35(8): 1787-1798. Zhan Zhenyu, Ruan Haoou, Lü Fangcheng, et al.Study on plasma fluorinated epoxy resin and its electrical properties in C4F7N/CO2 gas mixture[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1787-1798. [9] 马翊洋, 章程, 孔飞, 等. 等离子体射流阵列辅助薄膜沉积对环氧树脂表面电气特性的影响[J]. 高电压技术, 2018, 44(9): 3089-3096. Ma Yiyang, Zhang Cheng, Kong Fei, et al.The effect of plasma jet array assisted film deposition on the electrical properties of epoxy resin surface[J]. High Voltage Technology, 2018, 44(9): 3089-3096. [10] Han D, Moon S Y.Rapid formation of transparent superhydrophobicfilm on glasses by He/CH4/C4F8plasma deposition at atmospheric pressure[J]. Plasma Processes and Polymers, 2015, 12(2): 172-179. [11] Huang Chun, Lin Hsin-Hua, Li Chun.Atmospheric Pressure plasma polymerization of super-hydrophobic nano-films using hexamethyldisilazane monomer[J]. Plasma Chemistry and Plasma Processing, 2015, 35(6): 1015-1028. [12] Zhang Cheng, Zhou Yang, Shao Tao, et al.Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure[J]. Applied Surface Science, 2014, 311(5): 468-477. [13] Bastos D C, Santos, Anastácia EF, et al.Inducing surface hydrophobization on cornstarch film by SF6 and HMDSO plasma treatment[J]. Carbohydrate Polymers, 2013, 91(2): 675-681. [14] 王昕珏, 张波, 朱颖, 等. 含疏水性成分的二维射流阵列放电特性及表面改性研究[J]. 中国电机工程学报, 2017, 37(10): 69-76. Wang Xinjue, Zhang Bo, Zhu Ying, et al.Research on discharge characteristics and surface modification of two-dimensional jet array containing hydrophobic components[J]. Proceedings of the CSEE, 2017, 37(10): 69-76. [15] Marchand D J, Dilworth Z R, Stauffer R J, et al.Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor[J]. Surf Coat Technol, 2013, 234(6): 14-20. [16] Shao Tao, Yang Wenjin, Zhang Cheng, et al.Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105(7): 071607. [17] 林海丹, 马云飞, 梁义明,等. 聚合物绝缘材料表面电荷衰减特性研究进展[J]. 高压电器, 2015(8): 35-42. Lin Haidan, Ma Yunfei, Liang Yiming, et al.Research progress on surface charge attenuation characteristics of polymer insulating materials[J]. High VoltageApparatus, 2015(8): 35-42. [18] Stallard C P, Iqbal M M, Turner M M, et al.Investigation of the formation mechanism of aligned nano-structured siloxane coatings deposited using an atmospheric plasma jet[J]. Plasma Processes and Polymers, 2013, 10(10): 888-903. [19] 方志, 张波, 周若瑜, 等. HMDSO添加对大气压 Ar等离子体射流阵列放电特性的影响[J]. 高电压技术, 2017, 43(6): 1775-1783. Fang Zhi, Zhang Bo, Zhou Ruoyu, et al.Effect of HMDSO addition on discharge characteristics of Ar plasma jet array at atmospheric pressure[J]. High Voltage Technology, 2017, 43(6): 1775-1783. [20] Dimitrakellis P, Gogolides E.Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review[J]. Advances in Colloid and Interface Science. 2018, 254: 1-21. [21] Arpagaus C, Oberbossel G, Rudolf von Rohr P. Plasma treatment of polymer powders-from laboratory research to industrial application[J]. Plasma Processes and Polymers, 2018, 15(12): 1800133. [22] Kurusu R S, Demarquette N R.Surface modification to control the water wettability of electrospun mats[J]. International Materials Reviews, 2018, 64(5): 249-288. [23] 张波, 汪立峰, 刘峰, 等. 交流和纳秒脉冲激励氦气中等离子体射流阵列放电特性比较[J]. 电工技术学报, 2019, 34(6): 1319-1328. Zhang Bo, Wang Lifeng, Liu Feng, et al.Comparison of discharge characteristics of plasma jet arrays excited by AC and nanosecond pulses in helium[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1319-1328. [24] 杨勇, 梅丹华, 段戈辉, 等. 不同电源激励Ar同轴介质阻挡放电特性对比[J].高电压技术, 2020, 46(12): 4355-4364. Yang Yong, Mei Danhua, Duan Gehui, et al.Comparison of characteristics of Ar coaxial dielectric barrier discharge excited by different power sources[J]. High Voltage Engineering, 2020, 46(12): 4355-4364. [25] 史曜炜, 周若瑜, 崔行磊,等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 231-240. Shi Yaowei, Zhou Ruoyu, Cui Xinglei, et al.Experiments on coplanar dielectric barrier discharge characteristics under different power sources[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 231-240. [26] 叶成园, 黄邦斗, 章程, 等. 纳秒脉冲激励的表面介质阻挡放电中表面电离波传播特性[J]. 电工技术学报, 2020, 35(12): 2652-2661. Ye Chengyuan, Huang Bangdou, Zhang Cheng, et al.The propagation characteristics of surface ionization waves in nanosecond pulse excited surface dielectric barrier discharge[J]. Transactions of China Electrote-chnical Society, 2020, 35(12): 2652-2661. [27] Zhang Cheng, Shao Tao, Wang Ruixue, et al.A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium[J]. Physics of Plasmas, 2014, 21(10): 103505. [28] Zhang Cheng, Han Lei, Qiu Jintao, et al.A pulsed generator for synchronous discharges of high-energy plasma synthetic jet actuators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2076-2084. [29] Zhang Cheng, Niu Zongtao, Ren chengyan, et al. Factors influencing the discharge mode for microsecond-pulse gliding discharges at atmospheric pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2148-2156. [30] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [31] 邵先军, 马跃, 李娅西, 等. 大气压短间隙Ar介质阻挡辉光放电的模拟分析[J]. 高电压技术, 2010, 36(8): 2047-2052. Shao Xianjun, Ma Yue, Li Yaxi, et al.Simulation analysis on dielectric barrier glow discharge in short Ar gap under atmospheric pressure[J]. High Voltage Engineering, 2010, 36(8): 2047-2052. [32] Georghiou G E, Papadakis A P, Morrow R, et al.Numerical modelling of atmospheric pressure gas discharge leading to plasma production[J]. Journal of Physics D: Applied Physics, 2005, 38(20): 303-328. [33] Hong Yi, Niu Jinhai, Pan Jing, et al.Electron temperature and density measurement of a dielectric barrier discharge argon plasma generated with tube-to-plate electrodes in water[J]. Vacuum, 2016, 130(5): 130-136. [34] Miao Chuanrun, Liu Feng, Wang Qian, et al.Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power source[J]. The European Physical Journal D, 2018, 72(3): 57. [35] Evdokimov K E, Konischev M E, Pichugin V F, et al.Study of argon ions density and electron temperature and density in magnetron plasma by optical emission spectroscopy and collisional-radiative model[J]. Resource-Efficient Technologies,2017, 3(2): 187-193. [36] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M].北京: 科学出版社, 2015. [37] Loffhagen D, Becker M M, Hegemann D, et al.Large-area atmospheric pressure dielectric barrier discharges in Ar-HMDSO mixtures: experiments and fluid modelling[J]. Plasma Processes and Polymers, 2020, 17(2): e1900169. [38] Fang Zhi, Ding Zhengfang, Shao Tao, et al.Hydrophobic surface modification of epoxy resin using an atmospheric pressure plasma jet array[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2288-2293. [39] BlanchardNoémi E, Hanselmann B, Drosten J, et al. Densification and hydration of HMDSO plasma polymers[J]. Plasma Processes and Polymers, 2015, 12(1): 32-41. [40] Nan Jiang, Sheng Fa Qian, Wang Long, et al.Localized material growth by a dielectric barrier discharge[J]. Thin Solid Films, 2001, 390(1-2): 119-122. [41] Kim M C, Klages C P.One-step process to deposit a soft super-hydrophobic film by filamentary dielectric barrier discharge-assisted CVD using HMCTSO as a precursor[J]. Surface & Coatings Technology, 2009, 204(4): 428-432. [42] Panagiotis D, Evangelos G.Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: areview[J]. Advances in Colloid and Interface Science, 2018, 254(2): 1-21.