Sensitivity of C4F7N/CO2 Gas Mixture to Partial Inhomogeneous Electric Field
Yan Xianglian1, Zheng Yu2, Huang He1, Yang Yuan1, Zhou Wenjun2, Bai changyu3
1. China Electric Power Research Institute Beijing 100192 China;
2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China;
3. Pinggao Group Co. Ltd Pingdingshan 467001 China
The discharge characteristics of electron-attaching gases are sensitive to non-uniform electric field. However, it is difficult to make the electrode surface completely smooth in high-voltage electrical equipment. The effect of surface roughness of electrodes is prominent when the pressure is high, thus reducing the gas insulation performance. C4F7N/CO2 gas mixture is a potential alternative gas to SF6. It is necessary to investigate the sensitivity of C4F7N/CO2 to inhomogeneous electric field distribution. In this paper, the local electric field distortion caused by rough electrode surface is analyzed theoretically, and the influence of electric field distortion on the insulation performance of C4F7N/CO2 is calculated. The figure of merit is proposed to evaluate the tolerance of C4F7N/CO2 gas mixture to inhomogeneous electric field. Compared with SF6, when the content of C4F7N is less than 20%, the figure of merit of C4F7N/CO2 mixture is higher than that of SF6, which increases with the content of C4F7N decreasing. In order to verify the calculation results, a rough electrode discharge model was developed. The discharge tests of C4F7N/CO2 and SF6 gases were carried out. The figures of merit of C4F7N/CO2 with 10% C4F7N content and SF6 gases were obtained, which were close to the calculation results. Based on the figures of merit of C4F7N/CO2 gas mixture, and considering the controlling requirement of electrode surface roughness in C4F7N/CO2 gas mixture equipment with the same insulation performance as that of SF6, it shows that as the content of C4F7N is in the range of 4%~20%, the controlling requirement of electrode surface roughness of 6.3μm in SF6 equipment is suitable for the design of C4F7N/CO2 equipment.
颜湘莲, 郑宇, 黄河, 杨圆, 周文俊, 柏长宇. C4F7N/CO2混合气体对局部不均匀电场的敏感特性[J]. 电工技术学报, 2020, 35(1): 43-51.
Yan Xianglian, Zheng Yu, Huang He, Yang Yuan, Zhou Wenjun, Bai changyu. Sensitivity of C4F7N/CO2 Gas Mixture to Partial Inhomogeneous Electric Field. Transactions of China Electrotechnical Society, 2020, 35(1): 43-51.
[1] 高克利, 颜湘莲, 王浩, 等. 环保型气体绝缘输电线路(GIL)技术发展[J]. 高电压技术, 2018, 44(10): 3105-3113.
Gao Keli, Yan Xianglian, Wang Hao, et al.Progress in environment-friendly gas-insulated transmission line (GIL)[J]. High Voltage Engineering, 2018, 44(10): 3105-3113.
[2] 周文俊, 郑宇, 杨帅, 等. 替代SF6的环保型绝缘气体研究进展与趋势[J]. 高压电器, 2016, 52(12): 8-14.
Zhou Wenjun, Zheng Yu, Yang Shuai, et al.Progress and trend of study on environment friendly sf6 alternative insulation gases[J]. High Voltage Apparatus, 2016, 52(12): 8-14.
[3] 周文俊, 郑宇, 高克利, 等. 环保型绝缘气体电气特性研究进展[J]. 高电压技术, 2018, 44(10): 3114-3124.
Zhou Wenjun, Zheng Yu, Gao Keli, et al.Progress in researching electrical characteristics of environment-friendly insulating gases[J]. High Voltage Engineering, 2018, 44(10): 3114-3124.
[4] 颜湘莲, 高克利, 郑宇, 等. SF6混合气体及替代气体研究进展[J]. 电网技术, 2018, 42(6): 1837-1844.
Yan Xianglian, Gao Keli, Zheng Yu, et al.Progress of gas mixture and alternative gas of SF6[J]. Power System Technology, 2018, 42(6): 1837-1844.
[5] Kieffel Y, Biquez F.SF6 alternative development for high voltage switchgears[C]//IEEE Electrical Insulation Conference, Seattle, WA, USA, 2015:379-383.
[6] 赵明月, 林涛, 颜湘莲, 等. 基于氧同位素示踪法的电晕放电中H2O 和O2对SF6分解气体形成的影响[J]. 电工技术学报, 2018, 33(20): 4722-4728.
Zhao Mingyue, Lin Tao, Yan Xianglian, et al.Influence of trace H2O and O2 on SF6 decomposition characteristics under corona discharge based on oxygen isotope tracer[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4722-4728.
[7] 屠幼萍, 艾昕, 成毅, 等. C3F7CN/N2 混合气体的直流击穿特性[J]. 电工技术学报, 2018, 33(22): 5189-5195.
Tu Youping, Ai Xin, Cheng Yi, et al.DC breakdown characteristics of C3F7CN/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5189-5195.
[8] Kieffel Y, Irwin T, Ponchon P, et al.Green gas to replace SF6 in electrical grids[J]. IEEE Power & Energy Magazine, 2016, 14(2): 32-39.
[9] 王靖瑞, 王健, 倪潇茹, 等. 直流电场下C4F7N/CO2与SF6/N2混合气体中铝质球形自由微粒放电敏感度对比分析[J]. 电工技术学报,2018,33(20):4682-4691.
Wang Jingrui, Wang Jian, Ni Xiaoyu, et al.DC breakdown characteristics of C3F7CN/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4682-4691.
[10] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2016, 23(5): 2587-2593.
[11] Tu Youping, Cheng Yi, Wang Cheng, et al.Insulation characteristics of fluoronitriles/CO2 gas mixture under DC electric field[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2018, 25(4): 1324-1331.
[12] Zhao Hu, Li Xingwen, Tang Nian, et al.Dielectric properties of fluoronitriles/CO2 and SF6 /N2 mixtures as a possible SF6-substitute gas[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2018, 25(4): 1332-1339.
[13] Zhang Boya, Uzelac Nenad, Cao Yang.Fluoronitriles/ CO2 mixture as an eco-friendly alternative to SF6 for medium voltage switchgears[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2018, 25(4): 1340-1350.
[14] Pedersen A, Mcallister I W, Crichton G C, et al.Formulation of the streamer breakdown criterion and its application to strongly electronegative gases and gas mixtures[J]. Archiv für Elektrotechnik, 1984, 67(6): 395-402.
[15] Mcallister I W.Electric fields and electrical insulation[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2002, 9(5): 672-696.
[16] Pedersen A.The effect of surface roughness on breakdown in SF6[J]. IEEE Transactions on Power Apparatus & Systems, 1975, 94(5): 1749-1754.
[17] 李汝彪, 邱毓昌. 六氟化硫中电极表面粗糙度效应的新模型[J]. 西安交通大学学报, 1987(4): 41-49.
Li Rubiao, Qiu Yuchang.A new model for electrode surface roughness effect in SF6[J]. Journal of Xi’an Jiaotong University, 1987(4): 41-49.
[18] Qiu Y, Chalmers I D.Effect of electrode surface roughness on breakdown in SF6-N2 and SF6-CO2 gas mixtures[J]. Journal of Physics D: Applied Physics, 1993, 26(11):1928.
[19] Nechmi H E, Beroual A, Girodet A, et al.Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(2): 886-892.
[20] 严璋, 朱德恒. 高电压绝缘技术[M]. 3版. 北京: 中国电力出版社, 2015.
[21] 冀肖彤, 汤浩, 李金忠. 同轴圆柱SF6气体间隙直流绝缘特性及其影响因素[J]. 中国电机工程学报, 2012, 32(34):181-188.
Ji Xiaotong, Tang Hao, Li Jinzhong.DC voltage insulation characteristics and influencing factors for coaxial cylinder SF6 gap[J]. Proceedings of the CSEE, 2012, 32(34):181-188.
[22] Pedersen A.On the electrical breakdown of gaseous dielectrics-an engineering approach[J]. IEEE Transactions on Electrical Insulation, 1989, 24(5): 721-739.
[23] Chachereau A, Hosl A, Franck C M.Electrical insulation properties of the perfluoronitrile C4F7N[J]. Journal of Physics D: Applied Physics, 2018, 51:495201.