Abstract:In order to further study the differences in electroporation effects induced by micro-nanosecond pulsed electric fields on cell physical properties. In this paper, three different cell sizes and two different nucleus size cell were used as the research object. Based on the cell geometry, a 1:1 five-layer dielectric and electroporation numerical model was established and observed the process fluorescence dissipation of intracellular and extracellular membrane. The electroporation effect on intracellular and extracellular membrane induced by micro-nanosecond pulsed electric field was compared and analyzed and the electrical sensitivity mechanism of micro-nanosecond pulsed electric field targeting different cells was studied. The results show that the larger the cell size, the greater electroporation area of the extracellular membrane and the pore density and the percentage of fluorescence dissipation under the action of microsecond pulses with a pulse width of 100μs and a field strength of 1.5kV/cm. It is show that the electroporation effect of outer membrane is stronger. the larger the size of the nucleus, the larger the electroporation area of the nuclear membrane and the pore density and the percentage of fluorescence dissipation under the action of 80 nanosecond pulses with a pulse width of 400ns and a field strength of 15kV/cm, It is show that the electroporation effect of nuclear membrane is stronger. Therefore, the micro-nanosecond pulsed electric field has obvious selectivity to the target region and size of tumor cells. Through the research in this paper, data reference and theoretical support can be provided for the pulse electric field parameters needed to ablate different tumors.
姚陈果, 宁郡怡, 刘红梅, 郑爽, 董守龙. 微/纳秒脉冲电场靶向不同尺寸肿瘤细胞内外膜电穿孔效应研究[J]. 电工技术学报, 2020, 35(1): 115-124.
Yao Chenguo, Ning Junyi, Liu Hongmei, Zheng Shuang, Dong Shoulong. Study of Electroporation Effect of Different Size Tumor Cells Targeted by Micro-Nanosecond Pulsed Electric Field. Transactions of China Electrotechnical Society, 2020, 35(1): 115-124.
[1] Markelc B, Sersa G, Cemazar M.Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels[J]. Plos One, 2013, 8(3): e59557. [2] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24): 35-44. Dong Shoulong, Yao Chenguo, Yang Nan, et al.Development of a solid-state nanosecond pulsed plasma jet device based on Marx circuit[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 35-44. [3] Li Chengxiang, Yao Chenguo, Sun Caixin, et al.Dependence on electric field intensities of cell biological effects induced by microsecond pulsed electric fields[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2012, 18(6): 2083-2088. [4] Yao Chenguo, Hu Xiaoqian, Mi Yan, et al.Window effect of pulsed electric field on biological cells[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(5): 1259-1266. [5] Bowman A M, Nesin O M, Pakhomova O N, et al.Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake[J]. Journal of Membrane Biology, 2010, 236(1): 15-26. [6] Kander M, Miklav D, Pavlin M.Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study[J]. Bioelectrochemistry, 2009, 74(2): 265-271. [7] André F M, Gehl J, Sersa G, et al.Efficiency of high and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin[J]. Human Gene Therapy, 2008, 19(11): 1261-1272. [8] Rubinsky B, Onik G, Mikus P.Irreversible electroporation: a new ablation modality clinical implications[J]. Technology in Cancer Research & Treatment, 2007, 6(1): 37-48. [9] Heller R, Jaroszeski M J, Reintgen D S, et al.Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin[J]. Cancer, 2015, 83(1): 148-157. [10] Chopinet L, Batista-Napotnik T, Audrey M.Nanosecond electric pulse effects on gene expression[J]. Journal of Membrane Biology, 2013, 246(11): 851-859. [11] Cemazar M, Grosel A, Glavac D, et al.Effects of electrogenetherapy with\r, p53wt\r, combined with cisplatin on survival of human tumor cell lines with different\r, p53\r, status[J]. DNA and Cell Biology, 2003, 22(12): 765-775. [12] Sersa G, Jarm T, Kotnik T, et al.Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma[J]. British Journal of Cancer, 2008, 98(2): 388-398. [13] 姚陈果, 郭飞, 董守龙, 等. 纳秒脉冲处理A375细胞裸鼠皮下移植瘤的疗效评估[J]. 高电压技术, 2013, 39(1): 117-121. Yao Chenguo, Guo Fei, Dong Shoulong, et al.Evaluation of the therapeutic effect of nanosecond pulse on the subcutaneous transplantation of A375 cells in nude mice[J]. High Voltage Engineering, 2013, 39(1): 117-121. [14] 李成祥, 郭飞, 姚陈果, 等. 裸鼠皮下人恶性黑色素瘤在纳秒脉冲电场下的凋亡机制[J]. 高电压技术, 2013, 39(4): 890-895. Li Chengxiang, Guo Fei, Yao Chenguo, et al.Apoptosis mechanism of human malignant melanoma in nude mice under nanosecond pulse electric field[J]. High Voltage Technology, 2013, 39(4): 890-895. [15] 姚陈果, 郭飞, 王建, 等. 纳秒脉冲电场治疗裸鼠皮下人恶性黑色素瘤模型的长期效应[J]. 高电压技术, 2012, 38(12): 3357-3362. Yao Chenguo, Guo Fei, Wang Jian, et al.Long-term effects of nanosecond pulsed electric field on subcutaneous human malignant melanoma model in nude mice[J]. High Voltage Engineering, 2012, 38(12): 3357-3362. [16] Garcia P A, Neal R E, Sano M B, et al.Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(4): 1076-1085. [17] Phillips M A, Narayan R, Padath T, et al.Irreversible electroporation on the small intestine[J]. British Journal of Cancer, 2012, 106(3): 490-495. [18] Maor E, Ivorra A, Leor J, et al.The effect of irreversible electroporation on blood vessels[J]. Technology in Cancer Research & Treatment, 2007, 6(4): 307-312. [19] Lee E W, Chen C, Prieto V E, et al.Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation[J]. Radiology, 2010, 255(2): 426-433. [20] 米彦, 姚陈果, 李成祥, 等. 基于场-路复合模型的细胞内外膜跨膜电位时频特性[J]. 电工技术学报, 2011, 26(2): 14-20. Mi Yan, Yao Chenguo, Li Chengxiang, et al.Time frequency characteristics of transmembrane potentials on cellular inner and outer membranes based on dielectric-circuit compound model[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 14-20. [21] Beebe S J, Fox P M, Rec L J, et al.Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells[J]. Faseb Journal, 2003, 17(9): 1493-1495. [22] Beebe S J, Fox P M, Rec L J, et al.Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 286-292. [23] Kong M G, Kroesen G, Morfill G, et al.Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11(11): 1-35. [24] Schoenbach K H, Beebe S J, Buescher E S.Intracellular effect of ultrashort electrical pulses[J]. Bioelectromagnetics, 2010, 22(6): 440-448. [25] Agarwal A, Zudans I, Weber E A, et al.Effect of cell size and shape on single-cell electroporation[J]. Analytical Chemistry, 2007, 79(10): 3589-3596. [26] Ibey B L, Pakhomov A G, Gregory B W, et al.Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells[J]. Biochimica et Biophysica Acta, 2010, 1800(11): 1210-1219. [27] Ivey J W, Latouche E L, Sano M B, et al.Targeted cellular ablation based on the morphology of malignant cells[J]. Scientific Reports, 2015, 5: 17157. [28] 姚陈果, 吕彦鹏, 赵亚军, 等. 基于能量概率与微孔力模型的脉冲电场对细胞电穿孔动态过程的仿真分析[J]. 电工技术学报, 2016, 31(23): 141-149. Yao Chenguo, Lü Yanpeng, Zhao Yajun, et al.Simulation analysis of dynamic process of cell electroporation based on pulsed electric field based on energy probability and microporous force model[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 141-149. [29] 米彦, 孙才新, 姚陈果, 等. 基于等效电路模型的细胞内外膜跨膜电位频率响应[J]. 电工技术学报, 2007, 22(6): 6-11. Mi Yan, Sun Caixin, Yao Chenguo, et al.Frequency response of transmembrane potential on cell inner and outer membrane based on equivalent circuit model[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 6-11. [30] 姚陈果, 刘红梅, 赵亚军, 等. 基于有限元分析的球形单细胞及不规则真实细胞电穿孔动态过程仿真[J]. 高电压技术, 2016, 42(8): 2479-2486. Yao Chenguo, Liu Hongmei, Zhao Yajun, et al.Simulation on the process of electroporation in spherical single-cell and irregularly shaped real cells based on finite elements analysis[J]. High Voltage Engineering, 2016, 42(8): 2479-2486. [31] Yao Chenguo, Liu Hongmei, Zhao Yajun, et al.Analysis of dynamic processes in single-cell electroporation and their effects on parameter selection based on the finite-element model[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 889-900. [32] Zimmermann U, Pilwat G, Riemann F, et al.Dielectric breakdown of cell membranes[J]. Biophysics of Structure & Mechanism, 1974, 14(11): 881-899. [33] 米彦, 彭文成, 芮少琴, 等. 高频纳秒脉冲串作用下皮肤肿瘤热效应的多参数有限元仿真与实验[J]. 电工技术学报, 2017, 32(22): 264-274. Mi Yan, Peng Wencheng, Rui Shaoqin, et al.Multi-parameter finite element simulation and experiment of skin tumor thermal effect under high frequency nanosecond pulse train[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 264-274. [34] 米彦, 徐进, 刘宏亮, 等. 基于网格传输网络模型的高频纳秒脉冲串单细胞穿孔特性仿真[J]. 电工技术学报, 2018, 33(18): 4217-4230. Mi Yan, Xu Jin, Liu Hongliang, et al.Simulation of single-cell perforation characteristics of high-frequency nanosecond pulse train based on grid transmission network model[J]. Transactions of the China Electrotechnical Society, 2018, 33(18): 4217-4230. [35] Bellard E, Teissié J.Double pulse approach of electropulsation: a fluorescence analysis of the nucleus perturbation at the single cell level[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(5): 1267-1272. [36] Yao Chenguo, Lü Yanpeng, Gong Lingyu, et al.Targeted cell membrane damage by bipolar high repeated frequency pulses[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(5): 3270-3282. [37] Krassowska W, Filev P.Modeling electroporation in a single cell[J]. Biophysical Journal, 2007, 92(2): 404-417. [38] Jin Yan, Yang L J, White F H.Preliminary assessment of the epithelial nuclear-cytoplasmic ratio and nuclear volume density in human palatal lesions[J]. Journal of Oral Pathology & Medicine, 2010, 24(6): 261-265.