Output Characteristics of Double-Excited Coil Fe-Ga Transducer Considering Pre-Stress
Weng Ling1,2, Liang Shuzhi1,2, Wang Bowen1,2, Huang Wenmei1,2, Sun Ying1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:In order to study the output variation law of Fe-Ga transducer under different frequency magnetic fields, a Fe-Ga transducer with double excitation coil is designed. The static and dynamic output characteristics under different prestress are studied. The hysteresis characteristics at different frequencies are also studied. Through the conversion relationship between magnetic field energy and mechanical energy, the relationship between output mechanical energy and frequency is determined. The results show that under the same prestress, the static strain and output displacement gradually increase with the increase of the magnetic field and then become saturated. At the same frequency, the static strain and output displacement increase first and then decrease with the increase of prestress, and the static strain and output displacement values are the largest at 2MPa. Under the same prestress, the output displacement maximum decreases with the increase of the frequency. The maximum displacement increases first and then decreases with the increase of prestress at the same frequency. At the same frequency, the magneto-mechanical coupling coefficient is the largest when the prestress is 2MPa, and the output mechanical energy is the lar-gest too. Under the same prestress, the output mechanical energy increases first and then decreases with the increase of frequency, and then increases gradually.
[1] Zhang Lihui, Xia Yongming, Lu Kaiyuan, et al.Motor-driven giant magnetostrictive actuator[J]. IEEE Transactions on Magnetics, 2015, 51(10): 1-7. [2] Radhika B, Parisa T, Yajie C, et al.Giant enhancement of magnetostrictive response in directionally-solidified Fe83Ga17Erx compounds[J]. Materials, 2018, 11(6): 1039-1050. [3] Mahadevan A, Evans P G, Dapino M J.Dependence of magnetic susceptibility on stress in textured polycrystalline Fe81.6Ga18.4 and Fe79.1Ga20.9 Galfenol alloys[J]. Applied Physics Letters, 2010, 96(1): 303. [4] 翁玲, 李薇娜, 曹晓宁, 等. 环形Fe-Ga合金动态磁导率和损耗分析[J]. 电工技术学报, 2019, 34(3): 459-465. Weng Ling, Li Weina, Cao Xiaoning, et al.Analysis of dynamic permeability and energy loss of ring-shaped Fe-Ga alloy[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 459-465. [5] Vinogradov S, Cobb A, Bartlett J, et al.Development of a novel omnidirectional magnetostrictive transducer for plate applications[C]// American Institute of Physics Conference Series, Victoria, Australia, 2018, 1949(1): 090002. [6] 金亮, 寇晓斐, 郭富坤, 等. 基于电磁超声换能器的铁磁材料电磁声发射检测方法[J]. 电工技术学报, 2017, 32(18): 98-105. Jin Liang, Dou Xiaofei, Guo Fukun, et al.Electromagnetic acoustic emission detection method of ferromagnetic materials based on the EMAT[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 98-105. [7] Deng Z, Dapino M J.Magnetostrictive vibration dam- per and energy harvester for rotating machinery[C]// Industrial and Commercial Applications of Smart Structures Technologies. International Society for Optics and Photonics, San Diego, California, USA, 2015: 9433. [8] 谢新良, 王博文, 周露露, 等. 磁致伸缩位移传感器波导丝扭转超声波衰减特性研究[J]. 电工技术学报, 2018, 33(3): 689-696. Xie Xinliang, Wang Bowen, Zhou Lulu, et al.Research on torsional ultrasonic attenuation characteristics of the magnetostrictive displacement sensor waveguide[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 689-696. [9] 祝丽花, 王斌, 刘松, 等. 不同负载对干式变压器电磁振动的影响分析[J]. 电工技术学报, 2018, 33(7): 1599-1606. Zhu Lihua, Wang Bin, Liu Song, et al.Research on electromagnetic vibration of dry type transformer under different types of load[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1599-1606. [10] 翁玲, 王博文, 孙英, 等. 外应力对Terfenol-D棒的应变和磁感应强度的影响[J]. 功能材料, 2008, 39(3): 371-373. Weng Ling, Wang Bowen, Sun Ying, et al.Effect of stress on the strain and magnetic induction of Terfenol-D rod[J]. Journal of Functional Materials, 2008, 39(3): 371-373. [11] Wang B W, Busbridge S C, Guo Z J, et al.Magnetization processes and magnetostriction of Tb0.27Dy0.73Fe2 single crystal along direction[J]. Journal of Applied Physics, 2003, 93(10): 8489-8491. [12] 杨兴旺, 陶伟明. 磁致伸缩材料Terfenol-D非线性耦合有限元分析[J]. 浙江大学学报: 工学版, 2014, 48(11): 2094-2100. Yang Xingwang, Tao Weiming.Finite element approach for nonlinear coupling analysis of magnetostrictive materials Terfenol-D[J]. Journal of Zhejiang University: Engineering Science, 2014, 48(11): 2094-2100. [13] 闫荣格, 王博文, 曹淑瑛, 等. 超磁致伸缩致动器的磁-机械强耦合模型[J]. 中国电机工程学报, 2003, 23(7): 107-111. Yan Rongge, Wang Bowen, Cao Shuying, et al.Magnetomechanical strong coupled model for a giant magnetostrictive actuator[J]. Proceedings of the CSEE, 2003, 23(7): 107-111. [14] 李英明, 莫喜平, 柴勇, 等. 铁镓复合棒换能器设计及非线性驱动研究[J]. 声学学报, 2016, 41(3): 428-434. Li Yingming, Mo Xiping, Cai Yong, et al.Research on nonlinear driving manner of Galfenol transducer[J]. Acta Acustica, 2016, 41(3): 428-434. [15] 黄文美, 王博文, 曹淑瑛, 等. 计及涡流效应和应力变化的超磁致伸缩换能器的动态模型[J]. 中国电机工程学报, 2005, 25(16): 132-136. Huang Wenmei, Wang Bowen, Cao Shuying, et al.Dynamic model of giant magnetostrictive transducer considering eddy current effects and variational stress[J]. Proceedings of the CSEE, 2005, 25(16): 132-136. [16] 翁玲, 王博文, 孙英, 等. 磁场和应力作用下的超磁致伸缩换能器的动态模型[J]. 电工技术学报, 2008, 23(12): 17-22. Weng Ling, Wang Bowen, Sun Ying, et al.Dynamic Model of giant magnetostrictive transducer under magnetic field and stress[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 17-22. [17] Dapino M J, Smith R C, Flatau A B.Model for the ΔE effect in magnetostrictive transducers[C]// SPIE's 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, California, USA, 2000: 174-185. [18] 蔡万宠, 冯平法, 郁鼎文. 超磁致伸缩换能器预应力优化设计方法研究[J]. 振动.测试与诊断, 2017, 37(1): 48-52. Cai Wanchong, Feng Pingfa, Yu Dingwen.Research on the optimization design method of prestress for giant magnetostrictive transducer[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(1): 48-52. [19] 曾建斌, 白保东, 曾庚鑫, 等. 考虑压力变化的超磁致伸缩超声换能器动态模型[J]. 电工技术学报, 2012, 27(10): 215-219. Zeng Jianbin, Bai Baodong, Zeng Gengxin, et al.Dynamic models of giant magnetostrictive ultrasonic transducer taking account into variable pressure[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 215-219. [20] 孙英, 王博文, 翁玲, 等. 磁致伸缩致动器的输出位移与输入电流频率关系实验研究[J]. 电工技术学报, 2008, 23(3): 8-13. Sun Ying, Wang Bowen, Weng Ling, et al.Study of the relationship between output displacement and input current frequency for magnetostrictive actuator[J]. Transactions of China Electrotechnical Society, 2008, 23(3): 8-13. [21] Huang Wenmei, Li Yafang, Weng Ling, et al.Multifield coupling model with dynamic losses for giant magnetostrictive transducer[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [22] 翁玲, 曹晓宁, 胡秀玉, 等. 双线圈铁镓换能器的输出特性[J]. 电工技术学报, 2018, 33(19): 4476-4485. Weng Ling, Cao Xiaoning, Hu Xiuyu, et al.Output characteristics of double coil Fe-Ga alloy transducer[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4476-4485. [23] Datta S, Atulasimha J, Mudivarthi C, et al.Stress and magnetic field-dependent Youngʼs modulus in single crystal iron-gallium alloys[J]. Journal of Magnetism & Magnetic Materials, 2010, 322(15): 2135-2144. [24] 翁玲, 罗柠, 张露予, 等. Fe-Ga 合金磁特性测试装置的设计与实验[J]. 电工技术学报, 2015, 30(2): 237-241. Weng Ling, Luo Ning, Zhang Luyu, et al.Design and experiment of a testing device for Fe-Ga magnetic properties[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 237-241. [25] Bai Xiabing, Jiang Chengbao, Gong Shengkai.Electromechanical coupling coefficient (K33) of Fe81Ga19 magnetostrictive alloy[J]. Acta Metallurgica Sinica, 2007, 43(4): 413-416. [26] 戴魏, 郑玉平, 白亮亮, 等. 保护用电流互感器传变特性分析[J]. 电力系统保护与控制, 2017, 45(19): 46-54. Dai Wei, Zheng Yuping, Bai Liangliang, et al.Analysis of protective current transformer transient response[J]. Power System Protection and Control, 2017, 45(19): 46-54. [27] Engdahl G.Handbook of giant magnetostrictive materials[M]. San Diego: Academic Press, 2000. [28] 陈开宝, 陈为. 环形电感近磁场泄漏及其影响因素分析[J]. 电气技术, 2017, 18(3): 78-83. Chen Kaibao, Chen Wei.The analysis of toroidal inductor’s near magnetic field leakage and its influence factors[J]. Electrical Engineering, 2017, 18(3): 78-83. [29] 朱小溪, 张天丽, 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459. Zhu Xiaoxi, Zhang Tianli, Jiang Chengbao.Electromechanical coupling coefficient (K33) of Fe72.5Ga27.5 magnetostrictive alloy[J]. Acta Meta- llurgica Sinica, 2009, 45(4): 455-459.