电工技术学报  2018, Vol. 33 Issue (14): 3342-3352    DOI: 10.19595/j.cnki.1000-6753.tces.170766
电力系统 |
风电外送通道极限传输能力的自适应向量机估计
邱高1, 刘俊勇1, 刘友波1, 穆钢2, 刘挺坚1
1. 四川大学电气信息学院 成都 610065;
2. 东北电力大学电气工程学院 吉林 132012
Adaptive Support Vector Machine Estimation for Total Transfer Capability of Wind Power Exporting Corridors
Qiu Gao1, Liu Junyong1, Liu Youbo1, Mu Gang2, Liu Tingjian1
1. School of Electrical Engineering and Information Sichuan University Chengdu 610065 China;
2. School of Electrical Engineering Northeast Electric Power University Jilin 132012 China
全文: PDF (24891 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 风电随机性和间歇性导致基于典型方式计算的通道极限输电能力(TTC)有效性降低。提出一种TTC的自适应向量机估计方法,通过风电与负荷场景聚类形成代表性场景,采用重复潮流-二分法计算各场景下含暂稳约束的断面TTC值,经过最大信息系数与基于非参互信息的无监督特征筛选后,利用基于网格搜索-遗传算法寻优的自适应支持向量机对TTC进行回归估计。算例验证表明,该方法具备较强的数据拟合能力和非线性泛化能力,在线计算结果精确,能够实现TTC快速在线估计。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱高
刘俊勇
刘友波
穆钢
刘挺坚
关键词 风电极限传输能力运行规则提取自适应支持向量机    
Abstract:Total transfer capability of a transmission corridor technically changes fast with operation conditions. The conventional worst scenario-based methods hardly compute TTC efficiently that cannot meet online analysis requirement for wind power integration. In this paper, a SVM regression technique was presented to enable estimating TTC online. First, temporal wind power and load were clustered to determine representative scenario, which were used to generate samples by using repeated power flow with transient stability constraints. Second, through maximal information coefficient verification and unsupervised feature selection based on nonparametric mutual information, the most effective attributes were selected. Finally, SVM based on genetic algorithm-grid search was applied to establish regressed fitting model for TTC. Two cases were studied to validate the presented technique. The results indicate that the approach is able to fast and accurately estimate TTC of wind power exporting power systems with powerful fitting and generalization.
Key wordsWind power    total transfer capability    rule extraction    support vector machine   
收稿日期: 2017-06-01      出版日期: 2018-07-27
PACS: TM732  
基金资助:国家自然科学基金资助项目(51437003)
通讯作者: 刘俊勇 男,1963年生,博士,教授,博士生导师,主要从事电力市场,电力系统稳定与控制,电力系统运行与知识呈现方面研究。E-mail: liujy@scu.edu.cn   
作者简介: 邱 高 男,1994年生,硕士研究生,研究方向为电力系统数据挖掘与知识发现技术。E-mail: qiugaoscu@stu.scu.edu.cn
引用本文:   
邱高, 刘俊勇, 刘友波, 穆钢, 刘挺坚. 风电外送通道极限传输能力的自适应向量机估计[J]. 电工技术学报, 2018, 33(14): 3342-3352. Qiu Gao, Liu Junyong, Liu Youbo, Mu Gang, Liu Tingjian. Adaptive Support Vector Machine Estimation for Total Transfer Capability of Wind Power Exporting Corridors. Transactions of China Electrotechnical Society, 2018, 33(14): 3342-3352.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.170766          https://dgjsxb.ces-transaction.com/CN/Y2018/V33/I14/3342