Abstract:Wind power curve is an important basis for assessing the power generation performance of wind turbines, and is of great significance to wind farm management and power system scheduling. The equipment failures and control factors will cause a large number of outliers in wind speed-power curve during actual operation, which will directly affect the subsequent applications of the wind power curve. Based on the analysis of the characteristics of outliers, this paper divided the outliers into four categories according to their spatial distribution and shape features, including the bottom, middle and upper stacked outliers as well as scattered outliers around the curve. A combined strategy and its process for eliminating outliers were proposed based on the change point grouping and quartile method. Compared with the quartile-change point grouping method and the local outlier factor (LOF) algorithm, the results show that the proposed method and the combined strategy can eliminate four types of outliers with good effect, high efficiency and strong versatility.
沈小军, 付雪姣, 周冲成, 王伟. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361.
Shen Xiaojun, Fu Xuejiao, Zhou Chongcheng, Wang Wei. Characteristics of Outliers in Wind Speed-Power Operation Data of Wind Turbines and Its Cleaning Method. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361.
[1] Ge Shen, Bin Xu, Yunxian Jing, et al.Monitoring wind farms occupying grasslands based on remote- sensing data from China's GF-2 HD satellite—A case study of Jiuquan city, Gansu province, China[J]. Resources, Conservation and Recycling, 2017, 12(1): 128-136. [2] 田中大, 李树江, 王艳红, 等. 基于小波变换的风电场短期风速组合预测[J]. 电工技术学报, 2015, 30(9): 112-120. Tian Zhongda, Li Shujiang, Wang Yanhong, et al.Short-term wind speed combined prediction for wind farms based on wavelet transform[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 112-120. [3] 韦姝, 魏海坤, 朱婷婷, 等. 考虑风速分布与日非平稳性的风速数据预处理方法研究[J]. 电网与清洁能源, 2015, 31(3): 93-98, 123. Wei Shu, Wei Haikun, Zhu Tingting, et al.Research on data pre-processing method considering distri- bution and diurnal non-stationary of wind speed[J]. Power System and Clean Energy, 2015, 31(3): 93-98, 123. [4] 郭鹏, 文晶, 朱丹丹, 等. 基于源-荷互动的大规模风电消纳协调控制策略[J]. 电工技术学报, 2017, 32(3): 1-9. Guo Peng, Wen Jing, Zhu Dandan, et al.The coor- dination control strategy for large-scale wind power consumption based on source-load interactive[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 1-9. [5] 孙欣, 方陈, 沈风, 等. 考虑风电出力不确定性的发用电机组组合方法[J]. 电工技术学报, 2017, 32(4): 204-211. Sun Xin, Fang Chen, Shen Feng, et al.An integrated generation-consumption unit commitment model considering the uncertainty of wind power[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(4): 204-211. [6] 杨茂, 熊昊, 严干贵, 等. 基于数据挖掘和模糊聚类的风电功率实时预测研究[J]. 电力系统保护与控制, 2013, 41(1): 1-6. Yang Mao, Xiong Hao, Yan Gangui, et al.Real-time prediction of wind power based on data mining and fuzzy clustering[J]. Power System Protection and Control, 2013, 41(1): 1-6. [7] 王钦, 蒋怀光, 文福拴, 等. 智能电网中大数据的概念、技术与挑战[J]. 电力建设, 2016, 37(12): 1-10. Wang Qin, Jiang Huaiguang, Wen Fushuan, et al.Concept, technology and challenges of big data in smart grids[J]. Electric Power Construction, 2016, 37(12): 1-10. [8] Swapna S, Niranjan P, Srinivas B, et al.Data cleaning for data quality[C]//IEEE International Conference on Computing for Sustainable Global Development, New Delhi, India, 2016. [9] 朱倩雯, 叶林, 赵永宁, 等. 风电场输出功率异常数据识别与重构方法研究[J]. 电力系统保护与控制, 2015,43(3): 38-45. Zhu Qianwen, Ye Lin, Zhao Yongning, et al.Methods for elimination and reconstruction of abnormal power data in wind farms[J]. Power System Protection and Control, 2015, 43(3): 38-45. [10] 赵永宁, 叶林, 朱倩雯. 风电场弃风异常数据簇的特征及处理方法[J]. 电力系统自动化, 2014, 38(27): 39-46. Zhao Yongning, Ye Lin, Zhu Qianwen.Characteri- stics and processing method of abnormal data cluster caused by wind curtailments in wind farms[J]. Automation of Electric Power Systems, 2014, 38(27): 39-46. [11] 娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化, 2016, 40(10): 116-121. Lou Jianlou, Xu Jia, Lu Heng, et al.Wind turbine data-cleaning algorithm based on power curve[J]. Automation of Electric Power Systems, 2016, 40(10): 116-121. [12] Andrew Kusiak, Song Haiyang, Song Zhe.Modles for monitoring wind farm power[J]. Renewable Energy, 2009, 34(3): 583-590. [13] Yue Wang, David G Infield, Bruce Stephen, et al.Copula-based model for wind turbine power curve outlier rejection[J]. Wind Energy, 2014, 17(11): 1677-1688. [14] 范晓泉, 杜大军, 费敏锐. 风电异常测量数据智能识别方法研究[J]. 仪表技术, 2017(1): 10-14. Fan Xiaoquan, Du Dajun, Fei Minrui.Research on the intelligent identification method for abnormal measurement data of the wind power[J]. Instru- mentation Technology, 2017(1): 10-14. [15] Zheng L, Hu W, Min Y.Raw wind data preprocessing: a data-mining approach[J]. IEEE Transactions on Sustainable Energy, 2014, 6(1): 11-19. [16] 田书欣, 程浩忠, 曾平良, 等. 基于调频层面的风电弃风分析[J]. 电工技术学报, 2015, 30(7): 18-26. Tian Shuxin, Cheng Haozhong, Zeng Pingliang, et al.Analysis on wind power curtailment at frequency adjustment level[J]. Transactions of China Electro- technical Society, 2015, 30(7): 18-26. [17] Ye X, Lu Z, Qiao Y, et al.Identification and correction of outliers in wind farm time series power Data[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4197-4205. [18] Ding J, Xiang Y, Shen L, et al.Multiple change point analysis: fast implementation and strong consi- stency[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4495-4510. [19] 周影辉, 倪中新, 杨爱军. 0-1序列中变点的贝叶斯分析[J]. 数理统计与管理, 2014, 33(6): 1001-1009. Zhou Yinghui, Ni Zhongxin, Yang Aijun.Bayesian analysis of change-points in 0-1 sequences[J]. Journal of Applied Statistics and Management, 2014, 33(6): 1001-1009. [20] Chen X R.Inference in a simple change-point model[J]. Scientia Sinica, 1988, 31(6): 654-667. [21] 齐培艳, 田铮, 段西发, 等. 异方差非参数回归模型均值与方差变点的小波估计与应用[J]. 系统工程理论与实践, 2013, 33(4): 988-995. Qi Peiyan, Tian Zheng, Duan Xifa, et al.Wavelet estimators for change-points in mean and variance of nonparametric regression model and applications[J]. Systems Engineering-Theory & Practice, 2013, 33(4): 988-995. [22] Bai J, Perron P.Computation and analysis of multiple structural change models[J]. Cahiers De Recherche, 2003, 18(1): 1-22. [23] De Gregorio A, Iacus S M.Least squares volatility change point estimation for partially observed diffusion processes[J]. Communications in Statistics- Theory and Methods, 2008, 37(15): 2342-2357.