Abstract:An abnormal state early warning method for wind generating units is proposed based on support vector data description(SVDD) and XGBoost(eXtreme gradient boosting)model. The feature variables closely related to the generator speed and output power are selected. Then SVDD algorithm is employed to preprocess the SCADA historical data and the XGBoost-based normal performance prediction model is set up. The time-sliding window model is constructed to calculate the performance evaluation index on the basis of the developed model, and the threshold value of which is determined in accordance with the interval estimation theory of statistics. The abnormal state warning tests are carried out using several true historical fault cases recorded in the SCADA system of a 1.5MW wind power unit. It is shown that the abnormal state warning method based on SVDD and XGBoost can clean the original data effectively, and identify the wind turbine abnormal state timely. The proposed method has practical engineering significance for improving the operation safety of wind turbine generator system.
马良玉, 程善珍. 基于支持向量数据描述和XGBoost的风电机组异常工况预警研究[J]. 电工技术学报, 2022, 37(13): 3241-3249.
Ma Liangyu, Cheng Shanzhen. Abnormal State Early Warning of Wind Turbine Generator Based on Support Vector Data Description and XGBoost. Transactions of China Electrotechnical Society, 2022, 37(13): 3241-3249.
[1] 王丽婕, 廖晓钟, 高阳, 等. 风电场发电功率的建模和预测研究综述[J]. 电力系统保护与控制, 2009, 37(13): 118-121. Wang Lijie, Liao Xiaozhong, Gao Yang, et al.Summarization of modeling and prediction of wind power generation[J]. Power System Protection and Control, 2009, 37(13): 118-121. [2] 杨茂, 熊昊, 严干贵, 等. 基于数据挖掘和模糊聚类的风电功率实时预测研究[J]. 电力系统保护与控制, 2013, 41(1): 1-6. Yang Mao, Xiong Hao, Yan Gangui, et al.Real-time prediction of wind power based on data mining and fuzzy clustering[J]. Power System Protection and Control, 2013, 41(1): 1-6. [3] 刘轩. 风力发电机故障预警方法研究[D]. 北京: 华北电力大学, 2017. [4] 梁颖, 方瑞明. 基于SCADA和支持向量回归的风电机组状态在线评估方法[J]. 电力系统自动化, 2013, 37(14): 7-12, 31. Liang Ying, Fang Ruiming.An online wind turbine condition assessment method based on SCADA and support vector regression[J]. Automation of Electric Power Systems, 2013, 37(14): 7-12, 31. [5] Bangalore P, Tjernberg L B.An artificial neural network approach for early fault detection of gearbox bearings[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 980-987. [6] Chen Tianqi, Guestrin C.XGBoost: a scalable tree boosting system[C]//KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785-794. [7] 王桂兰, 赵洪山, 米增强. XGBoost算法在风机主轴承故障预测中的应用[J]. 电力自动化设备, 2019, 39(1): 73-77, 83. Wang Guilan, Zhao Hongshan, Mi Zengqiang.Application of XGBoost algorithm in prediction of wind motor main bearing fault[J]. Electric Power Automation Equipment, 2019, 39(1): 73-77, 83. [8] Chatterjee J, Dethlefs N.Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines[J]. Wind Energy, 2020, 23: 1693-1710. [9] Trizoglou P, Liu Xiaolei, Lin Zi.Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines[J]. Renewable Energy, 2021, 179: 945-962. [10] 赵洪山, 闫西慧, 王桂兰, 等. 应用深度自编码网络和XGBoost的风电机组发电机故障诊断[J]. 电力系统自动化, 2019, 43(1): 81-86. Zhao Hongshan, Yan Xihui, Wang Guilan, et al.Fault diagnosis of wind turbine generator based on deep autoencoder network and XGBoost[J]. Automation of Electric Power Systems, 2019, 43(1): 81-86. [11] Udo W, Muhammad Y.Data-driven predictive maintenance of wind turbine based on SCADA data[J]. IEEE Access, 9: 162370-162388. [12] 马然, 栗文义, 齐咏生. 风电机组健康状态预测中异常数据在线清洗[J]. 电工技术学报, 2021, 36(10): 2127-2139. Ma Ran, Li Wenyi, Qi Yongsheng.Online cleaning of abnormal data for the prediction of wind turbine health condition[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2127-2139. [13] 李航涛, 郭鹏, 杨锡运. 基于离散度分析的风电机组功率曲线绘制方法研究[J]. 太阳能学报, 2019, 40(1): 237-241. Li Hangtao, Guo Peng, Yang Xiyun.Research on wind turbine power curve drawing method based on discrete degree analysis[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 237-241. [14] Zheng Le, Hu Wei, Min Yong.Raw wind data preprocessing: a data-mining approach[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 11-19. [15] 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361. Shen Xiaojun, Fu Xuejiao, Zhou Chongcheng, et al.Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361. [16] 陈鹏, 赵小强. 基于GLNPE-SVDD的滚动轴承性能退化评估方法[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 12-16. Chen Peng, Zhao Xiaoqiang.Performance degradation evaluation method of rolling bearing based on GLNPE-SVDD[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(1): 12-16. [17] 乔福宇, 马良玉, 马永光. 基于功率曲线分析与神经网络的风电机组故障预警方法[J]. 中国测试, 2020, 46(8): 44-50. Qiao Fuyu, Ma Liangyu, Ma Yongguang.Wind turbine fault early warning method based on power curve analysis and neural network[J]. China Measurement & Test, 2020, 46(8): 44-50. [18] 万恒正. 基于SCADA数据关系的大型直驱式风电机组健康状态识别与预警[D]. 湘潭: 湖南科技大学, 2018. [19] 刘家辰, 苗启广, 曹莹, 等. 基于混合多样性生成与修剪的集成单类分类算法[J]. 电子与信息学报, 2015, 37(2): 386-393. Liu Jiachen, Miao Qiguang, Cao Ying, et al.Ensemble one-class classifiers based on hybrid diversity generation and pruning[J]. Journal of Electronics & Information Technology, 2015, 37(2): 386-393. [20] 张帆, 刘德顺, 戴巨川, 等. 一种基于SCADA参数关系的风电机组运行状态识别方法[J]. 机械工程学报, 2019, 55(4): 1-9. Zhang Fan, Liu Deshun, Dai Juchuan, et al.An operating condition recognition method of wind turbine based on SCADA parameter relations[J]. Journal of Mechanical Engineering, 2019, 55(4): 1-9.