Primary Frequency Regulation Strategy of Doubly-Fed Wind Turbine Based on Variable Power Point Tracking and Supercapacitor Energy Storage
Yan Xiangwu1, Song Zijun2, Cui Sen1, Sun Ying1, Li Tiecheng3
1. Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China; 2. Tangshan Power Supply Company State Grid Jibei Electric Power Co. Ltd Tangshan 100053 China; 3. State Grid Hebei Electric Power Research Institute Shijiazhuang 050021 China
Abstract:The doubly-fed wind turbine operates in the maximum power point tracking mode and cannot respond to the grid frequency change, and there is no standby active power to support the grid frequency control. When the wind power penetration rate increases continuously, the equivalent time constant of the system decreases, the frequency regulation pressure of the grid increases continuously, and the wind abandonment phenomenon is serious. The traditional control reduces power generation efficiency, speed adjustment range and frequent start of pitch angle control. To this end, a frequency adjustment strategy for coordinated control of doubly-fed wind turbines and energy storage devices was proposed. In the stochastic fluctuation of source and load, the power generation efficiency is close to the maximum power tracking mode, which is significantly higher than the overspeed load shedding control mode. At the same time, it also has a primary frequency adjustment capability that is significantly better than the traditional overspeed load shedding control, and does not require a pitch angle adjustment, which is beneficial to extend the life of the pitch system and improve its safety and reliability.
颜湘武, 宋子君, 崔森, 孙颖, 李铁成. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541.
Yan Xiangwu, Song Zijun, Cui Sen, Sun Ying, Li Tiecheng. Primary Frequency Regulation Strategy of Doubly-Fed Wind Turbine Based on Variable Power Point Tracking and Supercapacitor Energy Storage. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541.
[1] Ekanayake J, Jenkins N.Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 800-802. [2] 陈鉴庆, 邹旭东, 梁宗泽, 等. 基于反向电流跟踪的双馈风机低电压穿越控制策略[J]. 电工技术学报, 2016, 31(2): 221-229. Chen Jianqing, Zou Xudong, Liang Zongze, et al.Low voltage ride through control strategy of doubly-fed fan based on reverse current tracking[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 221-229. [3] 秦超, 刘艳丽, 余贻鑫, 等. 含双馈风机电力系统的动态安全域[J]. 电工技术学报, 2015, 30(18): 157-163. Qin Chao, Liu Yanli, Yu Yixin, et al.Dynamic safety domain of power system with doubly-fed wind turbines[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 157-163. [4] Boldea I, Fellow L.Electric generators and motors : an overview[J]. CES Transaction on Electrical Machines and Systems, 2017, 1(1): 3-14. [5] Knudsen H, Nielsen J N.Introduction to the modeling of wind turbines[M]. Chicester U. K: Wiley, 2005. [6] 张祥宇, 付媛, 王毅, 等. 含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J]. 电工技术学报, 2015, 30(1): 159-169. Zhang Xiangyu, Fu Yuan, Wang Yi, et al.Integrated PSS controller for variable speed wind turbines with virtual inertia and damping control[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 159-169. [7] 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20-25. Zhang Zhaosui, Sun Yuanzhang, Li Guojie, et al.Frequency control of doubly-fed wind turbines coordinated by overspeed and pitch[J]. Automation of Electric Power Systems, 2011, 35(17): 20-25. [8] 李和明, 张祥宇, 王毅, 等. 基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J]. 中国电机工程学报, 2012, 32(7): 32-39. Li Heming, Zhang Xiangyu, Wang Yi, et al.Virtual inertial control technology of doubly-fed wind turbine based on power tracking optimization[J]. Proceedings of the CSEE, 2012, 32(7): 32-39. [9] 赵晶晶, 吕雪, 符杨, 等. 基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J]. 电工技术学报, 2015, 30(5): 59-68. Zhao Jingjing, Lü Xue, Fu Yang, et al.Frequency adjustment technology of wind and light diesel microgrid based on variable coefficient-based double inertia fan virtual inertia and overspeed control[J]. Journal of Electrical Engineering, 2015, 30(5): 59-68. [10] 刘海营, 管萍. 双馈风力发电系统优化控制[J]. 电气技术, 2016, 17(3): 13-17. Liu Haiying, Guan Ping. optimal control of doubly-fed wind power generation system[J]. Electric Technology, 2016, 17(3): 13-17. [11] 全锐, 潘文霞, 刘明洋. 基于低阶频率响应模型的双馈风电机组下垂系数修正方法[J]. 电力系统自动化, 2018, 42(1): 68-73, 90. Quan Rui, Pan Wenxia, Liu Mingyang.Method for correcting droop coefficient of doubly-fed wind turbine based on low-order frequency response model[J]. Automation of Power Systems, 2018, 42(1): 68-73, 90. [12] Ullah N R, Thiringer T, Karlsson D.Temporary primary frequency control support by variable speed wind turbines-potential and application[J]. IEEE Trans-actions on Power System, 2008, 23(2): 601-612. [13] Vidyanandan K V, Senroy N.Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transaction on Power Systems, 2013, 28(2): 837-846. [14] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716. Fu Yuan, Wang Yi, Zhang Xiangyu, et al.Analysis and comprehensive control of inertia and primary frequency modulation of variable speed wind turbines[J]. Proceeding of the CSEE, 2014, 34(27): 4706-4716. [15] 赵晶晶, 吕雪, 符杨, 等. 基于双馈感应风力发电机虚拟惯量和桨距角联合控制的风光柴微电网动态频率控制[J]. 中国电机工程学报, 2015, 35(15): 3815-3822. Zhao Jingjing, Lü Xue, Fu Yang, et al.Dynamic frequency control of Fengguang diesel microgrid based on virtual inertia and pitch angle control of doubly-fed induction wind turbine[J]. Proceeding of the CSEE, 2015, 35(15): 3815-3822. [16] Ramtharan G, Ekanayake J B. Jenkins N.Frequency support from doubly fed induction generation wind turbines[J]. IET Renewable Power Generation, 2007, 1(1): 3-9. [17] Almeida R G, Pecas Lopes J A. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Transactions on Power Systems, 2007, 22(3): 944-950. [18] 姚伟, 文劲宇, 黄莹, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646. Yao Wei, Wen Jinyu, Huang Ying, et al.Technical prospects of large-scale wind power participation in system frequency adjustment[J]. Power System Technology, 2014, 38(3): 638-646. [19] 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35(7): 1596-1605. Liu Ju, Yao Wei, Wen Jinyu, et al.A virtual inertia compensation strategy for wind farm based on energy storage technology[J]. Proceedings of the CSEE, 2015, 35(7): 1596-1605. [20] 刘辉, 葛俊, 巩宇, 等. 风电场参与电网一次调频最优方案选择与风储协调控制策略研究[J]. 全球能源互联网, 2019, 2(1): 44-52. Liu Hui, Ge Jun, Gong Yu, et al.Wind farm participation in grid primary frequency optimization scheme selection and wind storage coordination control strategy research[J]. Global Energy Internet, 2019, 2(1): 44-52. [21] Jiang Zhenhua, Yu Xunwei.Modeling and control of an integrated wind power generation and energy storage system[C]//IEEE Power & Energy Society General Meeting, 2009: 1-8. [22] Takaaki K, Akio T.A new smooth scheme for power fluctuation using inverter of wind power generation with doubly fed induction generator[C]//2008 International Conference on Electrical Machines and Systems, Wuhan, 2008: 2390-2395. [23] Shiddiq Yunus A M, Mohammad A S M, Abu-Siada A. Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(4): 5702009. [24] 北极星电力网. 清洁发展的技术方案: 虚拟同步机与储能技术[EB/OL].[2016-11-30]. http://www. sohu.com/a/120289888_131990.