Abstract:In order to fully explore the frequency regulation capability of wind turbine and consider the shortcomings of traditional frequency modulation control strategy that the energy storage system (ESS) directly compensates the wind farm's secondary frequency drop, such as the high ESS capacity requirements and poor economy, a coordinated frequency regulation control strategy based on virtual synchronous generator (VSG) technology is proposed by the paper. Firstly, based on the structure of wind farm-ESS VSG system, the mathematical model of wind farm-ESS VSG is established, and the frequency modulation characteristics of wind storage VSG are analyzed. Secondly, according to the mathematical model of ESS, the state of charge (SOC) is considered. Then, considering the output characteristics of wind farm and ESS, a coordinated control strategy based on wind power inertia release and ESS steady-state support is proposed. By means of parallel output of wind farm and ESS, the short-term power support function of wind turbine can be brought into full play and the capacity demand of ESS is reduced. The simulation results show that the control strategy in the paper can greatly reduce the capacity configuration of ESS and improve the efficiency of wind farm frequency modulation on the basis of stabilizing the system frequency.
张冠锋, 杨俊友, 王海鑫, 谢赐戬, 付尧. 基于虚拟同步机技术的风储系统协调调频控制策略[J]. 电工技术学报, 2022, 37(zk1): 83-92.
Zhang Guanfeng, Yang Junyou, Wang Haixin, Xie Cijian, Fu Yao. Coordinated Frequency Modulation Control Strategy of Wind Farm-Storage System Based on Virtual Synchronous Generator Technology. Transactions of China Electrotechnical Society, 2022, 37(zk1): 83-92.
[1] Wu Ziping, Gao D W, Zhang Huaguang, et al.Coordinated control strategy of battery energy storage system and PMSG-WTG to enhance system frequency regulation capability[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1330-1343. [2] 陈文倩, 辛小南, 程志平. 基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33(增刊2): 538-545. Chen Wenqian, Xin Xiaonan, Cheng Zhiping.Control of grid-connected of photovoltaic system with storage based on virtual synchronous generatorl[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 538-545. [3] 刘辉, 葛俊, 巩宇, 等. 风电场参与电网一次调频最优方案选择与风储协调控制策略研究[J]. 全球能源互联网, 2019, 2(1): 44-52. Liu Hui, Ge Jun, Gong Yu, et al.Optimization scheme selection of wind farm participation in grid primary frequency modulation and study of wind-storage coordination control strategy[J]. Journal of Global Energy Interconnection, 2019, 2(1): 44-52. [4] 张中华. 支撑风电参与电网调频的储能控制技术与优化配置研究[D]. 北京: 华北电力大学,2019. [5] 程鹏, 马静, 李庆, 等. 风电机组电网友好型控制技术要点及展望[J]. 中国电机工程学报, 2020, 40(2): 456-467. Cheng Peng, Ma Jing, Li Qing, et al.A review on grid-friendly control technologies for wind power generators[J]. Proceedings of the CSEE, 2020, 40(2): 456-467. [6] 赵晶晶, 李敏, 何欣芹, 等. 基于限转矩控制的风储联合调频控制策略[J]. 电工技术学报, 2019, 34(23): 4982-4990. Zhao Jingjing, Li Min, He Xinqin, et al.Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4982-4990. [7] 李少林, 秦世耀, 王瑞明, 等. 一种双馈风电机组一次调频协调控制策略研究[J]. 太阳能学报, 2020, 41(2): 101-109. Li Shaolin, Qin Shiyao, Wang Ruiming, et al.A collaborative control of primary frequency regulation for DFIG-WT[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 101-109. [8] Hassan B, Toshifumi Ise B, Yushi M.Virtual synchronous generators: a survey and new perspectives[J]. International Journal of Electrical Power and Energy Systems, 2014, 54: 244-254. [9] 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165. Deng Xia, Sun Wei, Xiao Haiwei.Comprehensive control method of energy storage battery participating in primary frequency modulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165. [10] 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37(2): 336-349. Zhong Qingchang.Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37(2): 336-349. [11] 许崇福, 李菀茹, 徐宁一, 等. 应用于储能变流器的虚拟同步发电机阻尼特性分析与改进[J]. 电网技术, 2020, 44(5): 1656-1665. Xu Chongfu, Li Wanru, Xu Ningyi, et al.Analysis and improvement of damping characteristics of virtual synchronous generator control applied to energy storage converter[J]. Power System Technology, 2020, 44(5): 1656-1665. [12] 李承昱, 许建中, 赵成勇, 等. 基于虚拟同步发电机控制的 VSC 类同调等值方法[J]. 电工技术学报, 2016, 31(13): 111-119. Li Chengyu, Xu Jianzhong, Zhao Chengyong, et al.Coherency equivalence method for voltage source converter based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 111-119. [13] 赵杨阳, 柴建云, 孙旭东, 等. 基于虚拟同步发电机的柔性虚拟调速器模型[J]. 电力系统自动化, 2016, 40(10): 8-15. Zhao Yangyang, Chai Jianyun, Sun Xudong, et al.Flexible virtual governor model based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2016, 40(10): 8-15. [14] 侍乔明, 王刚, 付立军, 等. 基于虚拟同步发电机原理的模拟同步发电机设计方法[J]. 电网技术, 2015, 39(3): 783-790. Shi Qiaoming, Wang Gang, Fu Lijun, et al.A design method of simulative synchronous generator based on virtual synchronous generator theory[J]. Power System Technology, 2015, 39(3): 783-790. [15] 孙军, 蒋天龙, 王仰铭, 等. 不平衡电网下双馈感应发电机的虚拟同步机控制优化策略[J]. 电力系统自动化, 2020, 44(10): 135-146. Sun Jun, Jiang Tianlong, Wang Yangming, et al.Optimization strategy of virtual synchronous generator control for doubly-fed induction generator in unbalanced power grid[J]. Automation of Electric Power Systems, 2020, 44(10): 135-146. [16] 石荣亮, 张兴, 刘芳, 等. 不平衡与非线性混合负载下的虚拟同步发电机控制策略[J]. 中国电机工程学报, 2016, 36(22): 6086-6095. Shi Rongliang, Zhang Xing, Liu Fang, et al.A control strategy for unbalanced and nonlinear mixed loads of virtual synchronous generators[J]. Proceedings of the CSEE, 2016, 36(22): 6086-6095. [17] 陈天一, 陈来军, 汪雨辰, 等. 考虑不平衡电网电压的虚拟同步发电机平衡电流控制方法[J]. 电网技术, 2016, 40(3): 904-909. Chen Tianyi, Chen Laijun, Wang Yuchen, et al.Balanced current control of virtual synchronous generator considering unbalanced grid voltage[J]. Power System Technology, 2016, 40(3): 904-909. [18] 石荣亮, 张兴, 徐海珍, 等. 基于虚拟同步发电机的微网运行模式无缝切换控制策略[J]. 电力系统自动化, 2016, 40(10): 16-23. Shi Rongliang, Zhang Xing, Xu Haizhen, et al.Seamless switching control strategy for microgrid operation modes based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2016, 40(10): 16-23. [19] 刘尧, 陈建福, 侯小超, 等. 基于自适应虚拟惯性的微电网动态频率稳定控制策略[J]. 电力系统自动化, 2018, 42(9): 75-82, 140. Liu Yao, Chen Jianfu, Hou Xiaochao, et al.Dynamic frequency stability control strategy of microgrid based on adaptive virtual inertia[J]. Automation of Electric Power Systems, 2018, 42(9): 75-82, 140. [20] 涂春鸣, 兰征, 肖凡, 等. 具备同步电机特性的级联型光伏发电系统[J]. 中国电机工程学报, 2017, 37(2): 433-444. Tu Chunming, Lan Zheng, Xiao Fan, et al.Study on cascaded H-bridge photovoltaic power systems with synchronous generator characteristics[J]. Proceedings of the CSEE, 2017, 37(2): 433-444. [21] 袁敞, 刘昌, 赵天扬, 等. 基于储能物理约束的虚拟同步机运行边界研究[J]. 中国电机工程学报, 2017, 37(2): 506-516. Yuan Chang, Liu Chang, Zhao Tianyang, et al.Research on operating boundary of virtual synchronous machine based on physical constraint of energy storage system[J]. Proceedings of the CSEE, 2017, 37(2): 506-516. [22] 李吉祥, 赵晋斌, 屈克庆, 等. 考虑SOC特性的微电网VSG运行参数边界分析[J]. 电网技术, 2018, 42(5): 1451-1457. Li Jixiang, Zhao Jinbin, Qu Keqing, et al.Boundary analysis of operation parameters of microgrid VSG considering SOC characteristics[J]. Power System Technology, 2018, 42(5): 1451-1457. [23] 姜静雅, 王玮, 吴学智, 等. 基于自适应无功功率补偿的虚拟同步机功率解耦策略[J]. 电工技术学报, 2020, 35(13): 2747-2756. Jiang Jingya, Wang Wei, Wu Xuezhi.Power decoupling strategy in virtual synchronous generator based on adaptive reactive power compensation[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2747-2756. [24] 章艳, 高晗, 张萌. 不同虚拟同步机控制下双馈风机系统频率响应差异研究[J]. 电工技术学报, 2020, 35(13): 2889-2900. Zhang Yan, Gao Han, Zhang Meng.Research on frequency response difference of doubly-fed induction generator system controlled by different virtual synchronous generator controls[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2889-2900.