Influence of Rotor Claw Chamfer on Electromagnetic Vibration of Automotive Claw Pole Alternator
Wu Shuanglong1, Zuo Shuguang1, Zhong Hongmin1, Zhang Yaodan1, Sun Han2
1. Clean Energy Automotive Engineering Center Tongji University Shanghai 201804 China; 2. Shanghai Valeo Automotive Electrical Systems Co. Ltd Shanghai 201201 China
Abstract:This paper describes the influence of rotor claw chamfer on power generation capacity and electromagnetic vibration of automotive claw pole alternator. Firstly, 3D finite element model (FEM) of claw pole alternator was established and its accuracy was validated by back-electromotive force (back-EMF) test. Then, the magnetic force harmonics which mainly cause the electromagnetic vibration of claw pole alternator was identified with the help of 2D Fourier transform of magnetic force. What’s more, the influence of rotor claw chamfer on power generation capacity and magnetic force harmonics was analyzed. Finally, a multiphysics simulation model for predicting the electromagnetic vibration of claw pole alternator was established and the influence of rotor claw chamfer on electromagnetic vibration was analyzed. Results show that rotor claw chamfer would almost not decrease the power generation capacity but can greatly reduce the amplitude of magnetic force harmonics and the electromagnetic vibration of claw pole alternator. Rear chamfer is better than front chamfer on vibration reduction.
[1] Cros J, Viarouge P. New structures of polyphase claw-pole machines[J]. IEEE Transactions on Industry Applications, 2004, 40(1): 113-120. [2] 钟鸿敏, 左曙光, 吴旭东, 等. 电励磁爪极发电机气隙磁场与径向电磁力的解析计算模型[J]. 电工技术学报, 2017, 32(7): 49-58. Zhong Hongmin, Zuo Shuguang, Wu Xudong, et al. Analytic model of air gap magnetic field and radial electromagnetic force for electric excitation claw pole alternator[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 49-58. [3] Li Li, Kedous-Lebouc A, Foggia A, et al. Influence of magnetic materials on claw pole machines behavior[J]. IEEE Transactions on Magnetics, 2010, 46(2): 574-577. [4] 左曙光, 吴双龙, 吴旭东, 等. 电励磁爪极发电机气隙磁场解析模型[J]. 浙江大学学报(工学版), 2016, 50(12): 2400-2408. Zuo Shuguang, Wu Shuanglong, Wu Xudong, et al. Analytical model of air gap magnetic field for electric excitation claw pole alternators[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(12): 2400-2408. [5] Zhu Weidong, Fahimi B, Pekarek S. A field reconstruction method for optimal excitation of permanent magnet synchronous machines[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 305-313. [6] Takiguchi M, Sugimoto H, Kurihara N, et al. Acoustic noise and vibration reduction of SRM by elimination of third harmonic component in sum of radial forces[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 883-891. [7] Besnerais J L, Lanfranchi V, Hecquet M, et al. Characterization and reduction of audible magnetic noise due to PWM supply in induction machines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1288-1295. [8] Hwang S, Eom J, Hwang G, et al. Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3144-3146. [9] Zuo Shuguang, Lin Fu, Wu Xudong. Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2014, 62(10): 6204-6212. [10] Xiang L Y, Zuo S G, He L C, et al. Optimization of interior permanent magnet motor on electric vehicles to reduce vibration caused by the radial force[J]. Applied Computational Electromagnetics Society Journal, 2014, 29(4): 340-350. [11] Frias A, Pellere P, Lebouc A K, et al. Rotor and stator shape optimization of a synchronous machine to reduce iron losses and acoustic noise[C]//The 8th IEEE Vehicle Power and Propulsion Conference (VPPC), Seoul, South Korea, 2012: 98-103. [12] Sun Jianbo, Zhan Qionghua, Wang Shuanglong, et al. A novel radiating rib structure in switched reluctance motors for low acoustic noise[J]. IEEE Transactions on Magnetics, 2007, 43(9): 3630-3637. [13] Torregrossa D, Peyraut F, Cirrincione M, et al. A new passive methodology for reducing the noise in electrical machines: impact of some parameters on the modal analysis[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 1899-1907. [14] 鲍晓华, 刘谋志, 吴峰, 等. 基于旋转柔度的汽车发电机安装系统对其噪声的影响分析[J]. 电工技术学报, 2013, 28(6): 46-51. Bao Xiaohua, Liu Mouzhi, Wu Feng, et al. Influence of alternator’s installation system on its electromagnetic noise based on rotational compliance[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 46-51. [15] 鲍晓华, 杨帆, 李佳庆, 等. 汽车爪极发电机的转矩脉动分析及其对电磁噪声的影响[J]. 电工技术学报, 2014, 29(5): 167-173. Bao Xiaohua, Yang Fan, Li Jiaqing, et al. Torque ripple analysis and its impact on electromagnetic noise for automotive claw-pole alternators[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 167-173. [16] 鲍晓华, 吴峰, 魏琼, 等. 基于辅助槽的汽车爪极发电机电磁振动削弱方法[J]. 电工技术学报, 2014, 29(9): 161-166. Bao Xiaohua, Wu Feng, Wei Qiong, et al. Reduction of electromagnetic vibration for automobile alternator by auxiliary slot[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 161-166. [17] Li Jiaqing, Wei Qiong, Yang Fan, et al. Reduction of radial magnetic force waves based on eccentric magnetic pole for claw pole alternator[C]//2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control(IMCCC), Harbin, 2014: 55-60. [18] Yang Fan, Bao Xiaohua, Di Chong, et al. Simulation and experiment on reducing electromagnetic vibration and noise of claw-pole alternators[C]//2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 2015: 1452-1458. [19] Tan-Kim A, Lanfranchi V, Vivier S, et al. Vibro-acoustic simulation and optimization of a claw-pole alternator[J]. IEEE Transactions on Industry Applications, 2016, 52(5): 3878-3885. [20] Wu Shuanglong, Zuo Shuguang, Wu Xudong, et al. Numerical prediction and analysis of electromagnetic vibration and noise of claw pole alternator[C]//17th meeting of the Acoustical Society of America, Salt Lake City, Utah, 2016: 1-12.