Abstract:The performance of vector controlled system is greatly influenced by the non-linear changes of d axis inductance Ld and q axis inductance Lq of a synchronous reluctance motor according to different d axis and q axis current. The dq axis cross-coupling saturation inductor model was constructed with 8 constants in a synchronous reluctance motor driver. In order to find the optimal parameters, based on the design parameters of a transversally laminated anisotropic rotor synchronous reluctance motor, the measurement results of Ld & Lq were measured by general small current method, and a minimum average variance model was established. In addition, the weights were set up for different objective functions. An improved harmony search optimization algorithm was used, and thus the optimal solution was obtained, which was close to the real information of the motor. The method was proved in a load test.
仇一鸣, 康琦, 汪镭, 吴启迪. 同步磁阻电机dq轴交叉耦合饱和电感模型参数寻优方法[J]. 电工技术学报, 2017, 32(4): 85-92.
Qiu Yiming, Kang Qi, Wang Lei, Wu Qidi. A Parameter Optimization Method for dq Axis Inductance Model of Synchronous Reluctance Motors Considering Cross-Coupling Magnetic Saturation. Transactions of China Electrotechnical Society, 2017, 32(4): 85-92.
[1] ABB. High output synchronous reluctance motor and drive package-optimized cost of ownership for pump and fan applications[Z]. 2013. [2] Haataja J. A comparative performance study of four-pole induction motors and synchronous relu- ctance motors in variable speed drive[D]. Lappee- nranta: Lappeenranta University of Technology, 2003. [3] Moghaddam R R. Synchronous reluctance machine (SynRM) design[D]. Stockholm: Royal Institute of Technology, 2007. [4] 程启明, 程尹曼, 王映斐, 等. 交流电机控制策略的发展综述[J]. 电力系统保护与控制, 2011, 39(9): 145-154. Cheng Qiming, Cheng Yinman, Wang Yingfei, et al. Overview of control strategies for AC motor[J]. Power System Protection and Control, 2011, 39(9): 145-154. [5] de Almeida A T, Ferreira F J T E, Ge Baoming. Beyond induction motors-technology trends to move up efficiency[J]. IEEE Transactions on Industry Applications, 2014, 50(3): 2103-2114. [6] 陈小元, 邓智泉, 王晓琳, 等. 分块开关磁阻电机的研究现状及其新结构构想[J]. 电工技术学报, 2011, 26(3): 20-28. Chen Xiaoyuan, Deng Zhiquan, Wang Xiaolin, et al. Current status and new configurations of segmented switched reluctance machines[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 20-28. [7] 曾辉, 陈昊, 徐阳, 等. 基于新型磁链检测方案的开关磁阻电机非线性建模[J]. 电工技术学报, 2013, 28(11): 124-130. Zeng Hui, Chen Hao, Xu Yang, et al. Modeling of switched reluctance motor based on a novel flux linkage characteristic measurement method[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 124-130. [8] 蒯松岩, 汤锐智, 马金洋, 等. 基于电感模型的开关磁阻电机参数优化[J]. 电工技术学报, 2015, 30(7): 97-104. Kuai Songyan, Tang Ruizhi, Ma Jinyang, et al. Parameter optimization of the switched reluctance motor based on the inductance model[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 97- 104. [9] Yamamoto S, Ara T, Matsuse K. A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross- magnetic saturation[J]. IEEE Transactions on Industry Applications, 2007, 43(1): 47-56. [10] 谷鑫, 胡升, 史婷娜, 等. 基于神经网络的永磁同步电机多参数解耦在线辨识[J]. 电工技术学报, 2015, 30(6): 114-121. Gu Xin, Hu Sheng, Shi Tingna, et al. Muti-parameter decoupling online identification of permanent magnet synchronous motor based on neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 114-121. [11] 肖曦, 许青松, 王雅婷, 等. 基于遗传算法的内埋式永磁同步电机参数辨识方法[J]. 电工技术学报, 2014, 29(3): 21-26. Xiao Xi, Xu Qingsong, Wang Yating, et al. Parameter identification of interior permanent magnet syn- chronous motors based on genetic algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 21-26. [12] 傅小利, 顾红兵, 陈国呈, 等. 基于柯西变异粒子群算法的永磁同步电机参数辨识[J]. 电工技术学报, 2014, 29(5): 127-131. Fu Xiaoli, Gu Hongbing, Chen Guocheng, et al. Permanent magnet synchronous motors parameters identification based on cauchy mutation particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 127-131. [13] 杨超. 考虑磁路饱和的同步磁阻电机控制策略研究[D]. 重庆: 重庆大学, 2013. [14] 刘金海, 陈为, 胡金高. 永磁同步电机dq电感参数新实验获取法[J]. 电工技术学报, 2014, 29(7): 97-103. Liu Jinhai, Chen Wei, Hu Jingao. Novel experimental methods of acquiring dq inductance of permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 97-103. [15] Im J B, Kim W, Kim K. Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation[J]. IEEE Transactions on Magnetics, 2009, 45(6): 2803-2806. [16] Van Khang H, Kim J M, Ahn J W, et al. Synchronous reluctance motor drive system parameter identifi- cation using a current regulator[C]//IEEE Applied Power Electronics Conference and Exposition, 2008: 370-376. [17] Yamamoto S, Hirahara H, Adawey J B, et al. Matsuse maximum efficiency drives of synchronous relu- ctance motors by a novel loss minimization controller with inductance estimator[J]. IEEE Transactions on Industry Applications, 2013, 49(6): 2543-2551. [18] Ansari M M A, Cronje W A, Alan M. Evaluation of a reluctance synchronous motor: for use in an electric mine shuttle vehicle (EMSV)[C]//2012 IEEE Inter- national Electric Vehicle Conference, 2012: 1-6. [19] Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search[J]. Simulation Transactions of the Society for Modeling and Simulation International, 2001, 76(2): 60-68. [20] 袁野, 孙玉坤, 黄永红, 等. 单绕组磁悬浮开关磁阻飞轮电机和声混沌搜索优化设计[J]. 电工技术学报, 2015, 30(2): 180-188. Yuan Ye, Sun Yukun, Huang Yonghong, et al. Harmony chaotic search optimal design of single winding bearingless switched reluctance flywheel motors[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 180-188. [21] 孙伟, 常虹, 赵巧芝. 基于量子和声优化的改进DMSFE组合模型及在中长期电量预测中的应用[J]. 电力系统保护与控制, 2014, 42(21): 66-73. Sun Wei, Chang Hong, Zhao Qiaozhi. Forecasting mid-long term electricity consumption using a quantum harmony search based improved DMSFE combination model[J]. Power System Protection and Control, 2014, 42(21): 66-73. [22] 高云龙, 周羽生, 彭湃, 等. 优化和声算法在含DG配电网故障定位中的应用[J]. 电力系统保护与控制, 2014, 42(19): 26-31. Gao Yunlong, Zhou Yusheng, Peng Pai, et al. Application of harmony algorithm optimized for fault location in distribution networks with DG[J]. Power System Protection and Control, 2014, 42(19): 26-31. [23] 聂宏展, 赵丹, 段柯均, 等. 基于混沌自适应分组和声搜索算法的输电网规划[J]. 电力系统保护与控制, 2014, 42(19): 32-36. Nie Hongzhan, Zhao Dan, Duan Kejun, et al. Trans- mission network planning based on chaos adaptive grouping harmony search algorithm[J]. Power System Protection and Control, 2014, 42(19): 32-36. [24] Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems[J]. Applied Mathematics and Computation, 2007, 188(2): 1567-1579.