Abstract:Gas insulated transmission line (GIL) is used worldwide as its excellent performance. The heat dissipation of the insulating gas and the temperature rise effect are the key points of the design and on-line monitoring of the GIL. This paper builds a model of the second-generation GIL which contains the external air field, with 20%SF6-80%N2 as its insulating gas. The temperature rise is simulated by finite element method (FEM). The overall temperature distribution of GIL has been achieved, and the temperature rise of conductor and enclosure has also been derived. In comparison with the results achieved by analytical method, the effectiveness of the FEM method has been verified. The relevant factors that affect the temperature rise of the second-generation GIL are also simulated and analyzed. This paper provides a reference for the further application of the GIL.
李冰, 肖登明, 赵谡, 张辉. 第二代气体绝缘输电线路的温升数值计算[J]. 电工技术学报, 2017, 32(13): 271-276.
Li Bing, Xiao Dengming, Zhao Su, Zhang Hui. Temperature Rise Numerical Calculation of the Second Generation Gas Insulated Transmission Line. Transactions of China Electrotechnical Society, 2017, 32(13): 271-276.
[1] 阮全荣, 谢小平. 气体绝缘金属封闭输电线路工程设计研究与实践[M]. 北京: 中国水利水电出版社, 2011. [2] 鲁加明, 曹伟伟, 周振华. 550kV GIL母线的结构设计[J]. 电气技术, 2015, 16(9): 59-63. Lu Jiaming, Cao Weiwei, Zhou Zhenhua. The structural design of 550kV GIL bus[J]. Electrical Engineering, 2015, 16(9): 59-63. [3] Schoeffner G, Neumann T. 气体绝缘管道输电线和气体绝缘组合电器在电厂中的应用[J]. 电力建设, 2004, 25(6): 4-7. Schoeffner G, Neumann T. Application of gas insulated transmission lines (GIL) and gas insulated switchgear (GIS) for power plants[J]. Electric Power Construction, 2004, 25(6): 4-7. [4] Koch H, Hillers T. Second generation gas-insulated line[J]. Power Engineering Journal, 2002, 16(3): 111- 116. [5] Minaguchi D, Ginno M, Itaka K, et al. Heat transfer characteristics of gas-insulated transmission lines[J]. IEEE Transactions on Power Delivery, 1986, 1(1): 1-9. [6] Kim S, Kim H, Hahn S, et al. Coupled finite- element-analytic technique for prediction of temper- ature rise in power apparatus[J]. IEEE Transactions on Magnetics, 2002, 38(2): 921-924. [7] Ho S, Li Y, Lin X, et al. A 3-D study of eddy current field and temperature rises in a compact bus duct system[J]. IEEE Transactions on Magnetics, 2006, 42(4): 987-990. [8] Kim J K, Hahn S C, Park K Y, et al. Temperature rise prediction of EHV GIS bus bar by coupled magnet- othermal finite element method[J]. IEEE Transa- ctions on Magnetics, 2005, 41(5): 1636-1639. [9] 鄢来君, 张颖. 大电流封闭母线温升计算[J]. 高电压技术, 2008, 34(1): 201-203. Yan Laijun, Zhang Ying. Temperature calculation of bus with large current[J]. High Voltage Engineering, 2008, 34(1): 201-203. [10] 吴晓文, 舒乃秋, 李洪涛, 等. 气体绝缘输电线路温升数值计算及相关因素分析[J]. 电工技术学报, 2013, 28(1): 65-72. Wu Xiaowen, Shu Naiqiu, Li Hongtao, et al. Temper- ature rise numerical calculation and correlative factors analysis of gas-insulated transmission lines[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 65-72. [11] Wu X W, Shu N Q, Li L, et al. Finite element analysis of thermal problems in gas-insulated power apparatus with multiple species transport technique[J]. IEEE Transactions on Magnetics, 2014, 50(2): 321-324. [12] 张俊民, 高荟凯, 冯昊. 三种绝缘气体下开关设备的温度场及流场对比与分析[J]. 电工技术学报, 2015, 30(6): 155-161. Zhang Junmin, Gao Huikai, Feng Hao. Analysis of thermal and fluid field of switchgear in three insulating gases[J]. Transactions of China Electro- technical Society, 2015, 30(6): 155-161. [13] Koch H. Gas insulated transmission lines (GIL) [M]. Chichester: Wiley, 2011. [14] Hrovat G, Hamler A. Coupled current and thermal problem in the motor protection switch; verification of calculated temperature with measured ones[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(4): 764-769. [15] 梁智权. 流体力学[M]. 重庆: 重庆大学出版社, 2002. [16] 刘光启, 马连湘, 刘杰. 化学化工物性数据手册[M]. 北京: 化学工业出版社, 2002.