Abstract:A novel cylindrical magnetic levitation gravity compensator was proposed in this paper. The secondary adopted Halbach permanent magnet structure that had such excellent advantages as large levitation force and low vertical stiffness. The structure of this new-type magnetic levitation gravity compensator was introduced and its mathematical model was built. The air gap magnetic flux density from permanent magnet rings was calculated using equivalent current method. The expressions of static levitation force, dynamic levitation force and stiffness were derived. Through finite element simulation, the static characteristics of cylindrical magnetic levitation gravity compensator were obtained. And the special problems of low stiffness passive magnetic levitation were explained. Finally, a prototype was manufactured. The prototype experiment verified the feasibility of the proposed magnetic levitation gravity compensator.
[1] Kuo S K,Menq C H. Modeling and control of a six- axis precision motion control stage[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(1): 50-59. [2] Shan X, Kuo S K, Zhang J, et al. Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage[J]. IEEE/ASME Transa- ctions on Mechatronics, 2002, 7(1): 67-78. [3] Verma S, Kim W J, Gu J. Six-axis nanopositioning device with precision magnetic levitation techno- logy[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(2): 384-391. [4] Verma S, Kim W J, Shakir H. Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications[J]. IEEE Transactions on Industry Applications, 2005, 41(5): 1159-1167. [5] Verma S, Shakir H, Kim W J. Novel electromagnetic actuation scheme for multiaxis nanopositioning[J]. IEEE Transactions on Magnetics, 2006, 42(8): 2052- 2062. [6] Gajdusek M, Damen A, van den Bosch P. Identification and parameter-varying decoupling of a 3-DOF platform with manipulator[C]//International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 2008: 691-696. [7] Hol S, Buis E, Weerdt R. Lithographic apparatus, magnetic support for use therein, device manufac- turing method, and device manufactured thereby: US, 6831285B2[P]. [8] Hol S, Lomonova E, Vandenput A. Design of a magnetic gravity compensation system[J]. Precision Engineering, 2006, 30(3): 265-273. [9] Choi Y M, Lee M G, Gweon D G, et al. A new magnetic bearing using halbach magnet arrays for a magnetic levitation stage[J]. Review of Scientific Instruments, 2009, 80(4): 045106(1-9). [10] Choi Y M, Gweon D G. A high-precision dual-servo stage using halbach linear active magnetic bearings[J]. IEEE/ASME Transactions on Mechatronic, 2011, 16(5): 925-931. [11] Janssen J, Paulides J, Compter J, et al. Three- dimensional analytical calculation of the torque between permanent magnets in magnetic bearings[J]. IEEE Transactions on Magnetics, 2010, 46(6): 1748-1751. [12] Janssen J, Paulides J, Lomonova E, et al. Design study on a magnetic gravity compensator with unequal magnet arrays[J]. Mechatronics, 2013, 23(2): 197-203. [13] 张晓峰, 林彬. 大行程纳米级分辨率超精密工作台的发展方向[J]. 南京航空航天大学学报, 2005, 37(增1): 179-183. Zhang Xiaofeng, Lin Bin. Direction of ultraprecision stage with large travel and nanometer resolution[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(S1): 179-183. [14] 方菲. 宏微双驱动高精度二维运动平台的实现[D]. 杭州: 浙江大学, 2012. [15] 李恒, 朱煜, 贾松涛, 等. 电磁式超精密微动工作台研究现状与方向[J]. 现代机械, 2007(2): 1-3. Li Heng, Zhu Yu, Jia Songtao, et al. Research and development of ultra-precision magnetic stage[J]. Modern Machinery, 2007(2): 1-3. [16] 李恒, 朱煜, 胡金春, 等. 平面3-DOF电磁微动台设计及其解耦控制[J]. 科学技术与工程, 2008, 8(6): 1427-1431. Li Heng, Zhu Yu, Hu Jinchun, et al. Planar 3-DOF magnetic micro-motion stage and its decoupling control[J]. Science Technology and Engineering, 2008, 8(6): 1427-1431. [17] 寇宝泉, 张赫. 多自由度短行程超精密平面电机技术发展综述[J]. 电工技术学报, 2013, 28(7): 1-11. Kou Baoquan, Zhang He. Development of multi-DOF micro-motion ultra-precision planar motors[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(7): 1-11. [18] 寇宝泉, 张鲁, 李立毅. 复合电流驱动的永磁同步平面电机[J]. 电工技术学报, 2012, 27(3): 139-146. Kou Baoquan, Zhang Lu, Li Liyi. Composite-current driven synchronous permanent magnet planar motors[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 139-146. [19] 周赣, 黄学良, 周勤博, 等. 基于模式力的平面电机控制方法[J]. 电工技术学报, 2009, 24(2): 20-26. Zhou Gan, Huang Xueliang, Zhou Qinbo, et al. Control methods of planar motors based on the modal force[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 20-26. [20] 李立毅, 潘东华, 黄旭珍. 超精密短行程直线电机温度场分析及温升抑制[J]. 电工技术学报, 2013, 28(11): 112-117. Li Liyi, Pan Donghua, Huang Xuzhen. Temperature field analysis and temperature rise suppression of ultra-precision short-stroke linear motor[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(11): 112-117.