Healthy Evaluation on IGBT Solder Based on Electro-Thermal-Mechanical Analysis
Chen Minyou1, Gao Bing1, Yang Fan1, Xu Shengyou1, Xie Peng2
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China;
2. Maintenance Branch Company of State Grid Fujian Electric Power Co., Ltd. Fuzhou 350013 China
The failure of insulated gated bipolar transistor (IGBT) strongly depends on junction temperature, and the main reason for solder delamination is the thermal stress caused by uneven temperature distribution and coefficients of thermal expansion (CTE) mismatch. Therefore, accurate electro-thermal-mechanical model is essential to maintain an efficient operation. This paper presents an electro-thermal- mechanical model and analyzes the characteristics of steady and transient states. Based on the presented model, the failure behavior of solder joint is discussed; the effects of voids on the thermal-mechanical characteristic are analyzed. Results indicate the max value of thermal stress locates on the edge of solder layer and the martin of void. In addition, corner void has great influence on chip temperature. That is, the junction temperature increases with the percentage of center void increases. The junction temperature is 5.10℃ when the percentage of void reaches 50%. Based on the theory of heat energy and thermal stress, a method based on temperature gradient is proposed for evaluating the operation status of solder layer. It is verified that this method is an efficient way to monitor the operation of status of IGBT module. Moreover, the variation of temperature gradient under different degrees of solder failure is analyzed, and the change laws are the same as those of junction temperature. Simulation results indicate this method has a high sensitivity and can track the failure position.
[1] Wei Lixiang, Kerkman Russ J, Lukaszewski Richard A. Analysis of IGBT power cycling capabilities used in doubly fed induction generator wind power system[C]. Energy Conversion Congress and Exposition (ECCE), 2010 IEEE Atlanta, GA, 2010: 3076-3083.
[2] Anzawa Takashi, Yu Qiang. Reliability evaluation on deterioration of power device using coupled electrical thermal-mechanical analysis[J]. Journal of Electronic Packaging, 2008, 132(1): 319-324.
[3] Takahashi Tomohiro, Qiang Yu. Precision evaluation for thermal fatigue life of power module using coupled electrical-thermal-mechanical analysis[C]. Electronics Packaging Technology Conference, Singapore, 2010: 201-205.
[4] Sasaki Koji, Iwasa Naoko. Thermal and structural simulation techniques for estimating fatigue life of an IGBT module[C]. Proceedings of 20th Internation Symposium on Power Semiconductor Devices&IC’s, Oralando, 2008: 181-184.
[5] Ye Hua, Lin Minghui, Basaran Cemal. Failure modes and FEM analysis of power electronic packaging[J]. Finite Elements in Analysis and Design, 2002, 38(7): 601-612.
[6] Chen Yan, Wu Xin, Fedchenia Igor. A comprehensive analytical and experimental investigation of wire bond life for IGBT modules[C]. Applied Power Elec- tronics Conference and Exposition(APEC), Twenty- Seventh Annual Orlando, 2012: 2298-2304.
[7] 郑利兵, 韩立, 刘钧. 基于三维热电耦合有限元模型的IGBT失效形式温度特性研究[J]. 电工技术学报, 2011, 26(7): 242-246. Zheng Libing, Han Li, Liu Jun. Investigation of the temperature character of IGBT failure mode based on 3D thermal-electro coupling FEM[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 242-246.
[8] Bouarroudj M, Khatir Z, Lefebvre S. Temperature levels effects on the thermo-mechanical behavior of solder attach during thermal cycling of power elec- tronic modules[C]. Power Electronics Specialists Conference, Rhodes, 2008: 2435-2440.
[9] 谢鑫鹏, 毕向东, 胡俊. 空洞对功率芯片粘贴焊层热可靠性影响的分析[J]. 半导体技术, 2009, 34(10): 960-964, 1031. XieXinpeng, Bi Xiangdong, Hu Jun. Effects of voids on thermal reliability in power chip die attachment solder layer[J]. Semiconductor Technology, 2009: 34(10): 960-964, 1031.
[10] 徐盛友. 功率变流器状态监测及可靠性评估方法研究[D]. 重庆: 重庆大学, 2013.
[11] Xiang Dawei, Ran Li. Monitoring solder fatigue in a power module using case-above-ambient temperature rise[J]. IEEE Transactions on Industry Applications, 2011, 47(6): 2578-2590.
[12] Shinohara Kazunori, Yu Qiang. Fatigue evaluation of power devices[C]. International Conference on Elec-tronic Packaging Technology & High Density Packaging, Beijing, 2009: 1277-1283.
[13] Hung T Y, Chiang SY, Huang C J. Thermal- mechanical behavior of the bonding wire for a power module subjected to the power cycling test[J]. Microelectronics Reliability, 2011, 51(9-11): 1819- 1823.
[14] 陶文铨. 传热学[M]. 西安: 西安交通大学出版社, 2001.
[15] 孔祥谦. 有限单元法在传热学中的应用[M]. 北京: 科学出版社, 1998.
[16] 金建铭, 电磁场有限单元方法[M], 西安: 西安电子科技大学出版社, 1998.
[17] Libing Zheng Li Han. Investigation of the Tem- perature character of IGBT solder delamination based the 3-D thermal-electro coupling FEM[C]. Asia-Pacific Power and Energy Engineering Conference(APPEEC), IEEE Power&Energy Society(PES), Chengdu, 2010: 1-4.
[18] 罗文功. BGA封装的热应力分析及其热可靠性研究[D]. 西安: 西安电子科技大学, 2009.
[19] 万志敏. 多物理场耦合方法分析三种封装模块可靠性[D]. 武汉: 华中科技大学, 2011.
[20] 余小玲. 电力电子集成模块及新型翅柱复合型散热器的传热性能研究[D]. 西安: 西安交通大学, 2005.
[21] 陈明, 胡安. 绝缘栅双极型晶体管动态电热联合仿真模型[J]. 电力自动化设备2012, 32(4): 31-34. Chen Ming, Hu An. Dynamic electro-thermal simulation model of IGBT[J]. Electric Power Automation Equipment, 2012, 32(4): 31-34.
[22] M Bouarroudj, Z Khatir S. Comparison of stress distri- butions and failure modes during thermal cycling and power cycling on high power IGBT modules[C]. Power Electronics and Applications, 2007:1-10
[23] Nishad Patil, Dignanta Das, Kai Goebel, et al. Identification of failure precursor parameters for insulated gate bipolar transistors (IGBTs)[C]. Inter- national Conference on Prognostics and Health Management, 2008: 1-5.
[24] 周雒维, 周生奇, 孙鹏菊. 基于杂散参数辨识的IGBT模块内部缺陷诊断方法[J]. 电工技术学报, 2012, 27(5): 156-163. Zhou Luowei, Zhou Shengqi, Sun Pengju. Diagnostic method for internal defects of IGBTs base on stray parameter identification[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 156-163.
[25] W L Anderson, 彭翔. 利用超声波和温度梯度测量金属内部应力的新方法[J]. 天津大学学报, 1988, 2(4): 54-60.
W L Anderson, Peng Xiang. A new method of stress detection in metals by ultrasound and temperature gradient[J]. Journal of Tianjin University,1988, 2(4): 54-60.
[26] 俞刘建. 温度梯度梁、板单元的热模态分析[D]. 南京: 南京航空航天大学, 2011.