1. University of Chinese Academy of Sciences Beijing 100049 China; 2. Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 China; 3. Institute of Modern Physics Chinese Academy of Sciences Lanzhou 730000 China
Abstract:For high charge state electron cyclotron resonance ion source(ECRIS) magnet, generally, the power density is higher, and it generates a lot of heat. The efficient cooling of magnet coils is one of the key technologies which control the further improvement of high charge state ECRIS, and there are many researches aimed at cooling technology of magnet coils. This paper introduces the development work of high charge state ECRIS-LECR4 based on the evaporative cooling technology, which is the fourth generation ECRIS in institute of modern physics(IMP), Chinese Academy of Sciences. The disc unit structure is used in the magnet coils, and vertical cooling channels are arranged between coil units. The liquid coolant in channels absorbs the heat of coils, and evaporates into steam. This steam coolant automatically flows upward and into condenser, and condenses into liquid. Based on the phase change of coolant, the self-circulating evaporative cooling thermodynamic cycle is built, which realizes the heat transmission of magnet coils. The system tests of LECR4 ion source were completed after the manufacture. The test results show that magnetic coils can ensure secure and stable operation about 60℃under rated load, and the magnetic field parameters have reached the design requirements.
熊斌, 阮琳, 顾国彪, 卢旺, 张雪珍. 蒸发冷却技术在高电荷态ECR离子源磁体上的应用——LECR4[J]. 电工技术学报, 2015, 30(10): 219-225.
Xiong Bin, Ruan Lin, Gu Guobiao, Lu Wang, Zhang Xuezhen. Application of Evaporative Cooling Technology in Magnet of High Charge State ECR Ion Source-LECR4. Transactions of China Electrotechnical Society, 2015, 30(10): 219-225.
[1] Geller R. Electron Cyclotron Resonance Ion Sources and ECR Plasmas[J]. Institute of Physics Publishing, UK, 1996, 1: 331-346. [2] 赵红卫, 刘占稳, 张汶, 等.高电荷态ECR离子源[J]. 原子能科学技术, 2000, 34(3): 282-288. Zhao Hongwei, Liu Zhanwen, Zhang Wen, et al. High charge state ECR ion sources[J]. Atomic Energy Science and Technology, 2000, 34(3): 282-288. [3] 刘占稳, 张汶, 张雪珍, 等. 高电荷态ECR2离子源[J]. 强激光与粒子束, 1996, 8(2): 310-312. Liu Zhanwen, Zhang Wen, Zhang Xuezhen, et al. High charge state ion sources[J]. High Power Laser and Particle Beams, 1996, 8(2): 310-312. [4] 赵红卫, 刘占稳, 张雪珍, 等.一台14.5GHz新型高磁场高电荷态ECR离子源[J]. 高能物理与核物理, 1999, 23(7): 717-722. Zhao Hongwei, Liu Zhanwen, Zhang Xuezhen, et al. A 14.5GHz new ECR ion source with high charge state and high magnetic field[J]. High Energy Physics and Nuclear Physics, 1999, 23(7): 717-722. [5] 张子民, 赵红卫, 张雪珍, 等. 高电荷态ECR离子源—LECR3[J]. 高能物理与核物理, 2003, 27(10): 914-918. Zhang Zimin, Zhao Hongwei, Zhang Xuezhen, et al. High charge state ECR ion sources-LECR3[J]. High Energy Physics and Nuclear Physics, 2003, 27(10): 914-918. [6] 宋沛, 郭晓虹, 赵红卫, 等. Afterglow工作模式下ECR离子源脉冲束的产生[J]. 高能物理与核物理, 2001, 25(10): 1029-1034. Song Pei, Guo Xiaohong, Zhao Hongwei, et al. Production of pulsed ion beams by ECR ion source afterglow mode[J]. High Energy Physics and Nuclear Physics, 2001, 25(10): 1029-1034. [7] 中国电气工程大典编委会. 中国电气工程大典第9卷: 电机工程[M]. 北京: 中国电力工业出版社, 2008. [8] 马代斌. 三峡地下电站700MW水轮发电机蒸发冷却系统安装与调试[J]. 东方电机, 2014(1): 17-21. Ma Daibin. Installation and commissioning of 700MW evaporative cooling hydro-generators for three gorges power station[J]. Dongfang Electric Machinery, 2014(1): 17-21. [9] 姚若萍, 饶芳权. 蒸发冷却水轮发电机定子温度场研究[J]. 中国电机工程学报, 2003, 23(6): 87-90. Yao Ruoping, Rao Fangquan. Analysis of 3D thermal field in the stator of large hydro-generator with evaporative cooling system[J]. Proceedings of the CSEE, 2003, 23(6): 87-90. [10] Yuan Jiayi, Gu Guobiao, Ruan Lin, et al. Applied engineering design of three gorges' 840MVA hydro- generator with close loop self-circulating evaporative cooling system[C]. Proceedings of the 11th Interna- tional Conference on Electrical Machines and Systems, Wuhan, China, 2008. [11] 姚涛, 侯哲, 顾国彪. 蒸发冷却技术应用于大型汽轮发电机的技术可行性[J]. 电工技术学报, 2008, 23(2): 1-5. Yao Tao, Hou Zhe, Gu Guobiao. Application of evaporative cooling technique to large turbo generator [J]. Transactions of China Electrotechnical Society, 2008, 23(2): 1-5. [12] 温志伟, 顾国彪, 王海峰. 浸润式与强迫内冷结合的蒸发冷却汽轮发电机定子三维温度场计算[J]. 中国电机工程学报, 2006, 26(23): 133-138. Wen Zhiwei, Gu Guobiao, Wang Haifeng. Calculation of 3D thermal field in the stator of turbo-generator with immersion evaporative-cooling system and forced inner-cooling[J]. Proceedings of the CSEE, 2006, 26(23): 133-138. [13] 国建鸿, 顾国彪, 傅德平, 等. 330MW蒸发冷却汽轮发电机冷却技术的特点及性能[J]. 电工技术学报, 2013, 28(3): 134-139. Guo Jianhong, Gu Guobiao, Fu Deping, et al. Cooling characteristics and performance of the 330MW evapora- tive cooling turbo generator[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 134-139. [14] 郭卉, 宋福川, 袁佳毅, 等. 蒸发冷却电磁除铁器的研究[J]. 中国电机工程学报, 2006, 26(11): 60-64. Guo Hui, Song Fuchuan, Yuan Jiayi, et al. The research of the evaporative cooling electromagnetic iron-separator [J]. Proceedings of the CSEE, 2006, 26(11): 60-64. [15] 李振国, 田新东, 张广强, 等. 电厂空冷风机变频器蒸发冷却技术改造[J]. 电力自动化设备, 2008, 28(10): 116-119. Li Zhenguo, Tian Xindong, Zhang Guangqiang, et al. Evaporative cooling technology applied to inverter of power plant air-cooling fan[J]. Electric Power Automa- tion Equipment, 2008, 28(10): 116-119. [16] Lu W, Xie D Z, Zhang X Z, et al. Development of DRAGON electron cyclotron resonance ion source at institute of modern physics[J]. Review of Scientific Instruments, 2012, 83, 02A328: 1-3. [17] Lu W, Xie D Z, Xiong B, et al. Development update of the LECR4 ion source-DRAGON at IMP[C]. Proceedings of ECRIS, Sydney, 2012. [18] Xiong B, Ruan L, Gu G B, et al. Application of evaporative cooling technology in super-high power density magnet[J]. Review of Scientific Instruments, 2014, 85, 02A913: 1-4.