Erosion Resistance Evaluation and Material Selection of Silicone Rubber for Composite Insulators in Desert-Gobi Regions
Geng Jianghai1, Qu Huanlong1, Wang Ping1, Tian Zhengbo2, Zhang Rui3
1. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China; 2. Xiangyang State Grid Composite Insulators Co. Ltd Xiangyang 441000 China; 3. China Electric Power Research Institute Wuhan 430074 China
Abstract:The composite insulators of transmission lines in the desert, Gobi, and wilderness regions of Northwest China are subjected to erosion wear from high-speed moving sand particles, making them highly susceptible to material damage and performance degradation. These issues can lead to tripping faults in transmission lines, severely compromising the safe and stable operation of power grids. Material hardness and mechanical performance parameters are critical factors determining erosion resistance. However, the current evaluation system for silicone rubber material performance under the complex environmental conditions of sandstorm-prone regions remains incomplete, failing to optimally select materials capable of meeting long-term service requirements in extreme wind-sand erosion environments. To address this, the study established 20 sampling points along ultra-high voltage transmission line towers in frequent sandstorm areas of Xinjiang and Qinghai. A coordinated sand collection system integrating weather stations, sand collectors, and anemometers was designed to conduct on-site collection of dust samples. Statistical analyses of sand particle size distribution, morphology, and high-altitude wind speeds were performed to authentically reconstruct the wind-sand environment in desert, Gobi, and wilderness regions. Based on the analysis of wind-sand characteristic parameters, a mobile, multi-environmental parameter-adjustable airflow sandblasting erosion simulation test system was developed. This system enabled sand erosion simulation experiments on silicone rubber flat specimens under varying erosion durations and angles, as well as on intact composite insulators under steady-state erosion conditions. Post-erosion characterization of silicone rubber materials with different formulations included microscopic morphology analysis, roughness measurement, hydrophobicity assessment, hardness testing, mechanical property evaluation, and flashover voltage testing. A multi-dimensional performance evaluation system for silicone rubber materials was established, facilitating the optimal selection of materials better suited to the extreme wind-sand erosion environments in desert, Gobi, and wilderness regions. This systematic approach provides a scientific basis for developing composite insulators with enhanced durability in harsh sandstorm-prone areas. This study reveals the damage evolution patterns and performance degradation mechanisms of silicone rubber materials under wind-sand erosion conditions. The research identifies a distinct three-stage characteristic in the erosion wear process of silicone rubber materials: During the initial phase, low-hardness materials exhibit higher wear rates while high tear-strength materials demonstrate superior performance. In the acceleration phase, the wear rate growth of high tear-strength materials becomes significantly pronounced. At the steady-state phase, material hardness shows a negative correlation with wear rate, where increasing hardness can reduce wear rates by over 30%. The steady-state erosion rate displays a typical unimodal distribution with sand impact angles, peaking between 30°~45°. Notably, the high-hardness 1 material (80 Shore A) exhibits optimal erosion resistance, achieving a 30% lower wear rate and minimal cumulative mass loss compared to conventional materials. Morphological analysis of steady-state damage demonstrates that low-hardness materials primarily undergo viscoelastic fatigue-driven lamellar exfoliation, whereas high-hardness materials develop a composite damage mechanism combining brittle exfoliation and crack propagation, forming characteristic “pit clusters with radial cracks” morphologies. Comprehensive performance evaluations confirm that the high-hardness 1 material maintains significant advantages in mechanical property retention, hydrophobicity recovery capability, and flashover voltage stability. Based on these findings, it is recommended to prioritize the 80 Shore A high- hardness 1 silicone rubber material for power equipment in desert-Gobi-wilderness regions. This research provides critical theoretical foundations and experimental support for selecting protective materials in extreme environments, offering technical guidance for enhancing the operational reliability of transmission lines in sandstorm-prone areas.
[1] 李海啸, 程强, 周林, 等. 大型可再生能源电站系统电压分布式非凸优化方法[J]. 电工技术学报, 2025, 40(22): 7399-7417. Li Haixiao, Cheng Qiang, Zhou Lin, et al.Distributed non-convex optimization method for system-wide voltage of large-scale renewable energy power plants[J]. Transactions of China Electrotechnical Society, 2025, 40(22): 7399-7417. [2] 贾科, 李昱霖, 毕天姝, 等. 基于早期故障判别的直流并网系统主动保护[J]. 电工技术学报, 2025, 40(5): 1427-1439. Jia Ke, Li Yulin, Bi Tianshu, et al.Incipient fault identification based active protection of DC collection line[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1427-1439. [3] 刘炯, 王劲, 梁明, 等. 高海拔条件下沙尘暴天气对线-板间隙工频击穿电压的影响试验研究[J]. 绝缘材料, 2022, 55(10): 99-106. Liu Jiong, Wang Jin, Liang Ming, et al.Experimental study on influence of dust storm weather on power frequency breakdown voltage of line-board gap under high altitude[J]. Insulating Materials, 2022, 55(10): 99-106. [4] 张重远, 李星辰, 马旭东, 等. 高海拔沙尘环境对典型长间隙操作冲击放电特性的影响[J]. 科学技术与工程, 2021, 21(11): 4478-4485. Zhang Zhongyuan, Li Xingchen, Ma Xudong, et al.Influence of sand and dust environment in high altitude area on impulse discharge characteristics of typical long gap operation[J]. Science Technology and Engineering, 2021, 21(11): 4478-4485. [5] 刘贺晨, 胡如法, 刘云鹏, 等. 220 kV退役复合绝缘子芯棒整体回收再利用可行性研究[J]. 电工技术学报, 2024, 39(11): 3433-3443. Liu Hechen, Hu Rufa, Liu Yunpeng, et al.Feasibility of the overall recycling of 220 kV retired composite insulator core rods[J]. Transactions of China Electro-technical Society, 2024, 39(11): 3433-3443. [6] 张星宇, 张小明, 陈雅琦, 等. 复合绝缘子芯棒环氧树脂材料裂解机理研究[J]. 电气技术, 2022, 23(2): 1-6, 25. Zhang Xingyu, Zhang Xiaoming, Chen Yaqi, et al.Study on pyrolysis mechanism of epoxy resin for composite insulator core rod[J]. Electrical Engineering, 2022, 23(2): 1-6, 25. [7] 曹雯, 杨特, 申巍, 等. 变湿度条件下不同老化程度复合绝缘子的红外温升行为及特征分析[J]. 电工技术学报, 2025, 40(17): 5601-5614. Cao Wen, Yang Te, Shen Wei, et al.Infrared tempera-ture rise behavior and characteristic analysis of compo-site insulators with different aging degrees under variable humidity conditions[J]. Transactions of China Electrotechnical Society, 2025, 40(17): 5601-5614. [8] 沈瑶, 刘兴杰, 梁英, 等. 基于硅橡胶分子链陷阱变化的复合绝缘子老化现象[J]. 电工技术学报, 2024, 39(17): 5545-5554. Shen Yao, Liu Xingjie, Liang Ying, et al.Aging phenomenon of composite insulators based on chemical traps’ change of silicone rubber molecular chain[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5545-5554. [9] 武永泉, 张四维, 江宗毅, 等. FXBW-500复合绝缘子内部碳化爬电缺陷下温度分布特性研究[J]. 绝缘材料, 2025, 58(2): 102-109. Wu Yongquan, Zhang Siwei, Jiang Zongyi, et al.Temperature distribution characteristics of FXBW-500 composite insulator with internal carbonization creepage defect[J]. Insulating Materials, 2025, 58(2): 102-109. [10] Zhang Xiaojun, Kuang Shilong, Wu Suzhou, et al.Analysis of aging characteristics of umbrella skirts of composite insulators operating under the influence of a wind and sand environment in south Xinjiang[J]. Materials, 2024, 17(3): 680. [11] Alidokht S A, Lengaigne J, Klemberg-Sapieha J E, et al. Effect of microstructure and properties of Ni-WC composite coatings on their solid particle erosion behavior[J]. Journal of Materials Engineering and Performance, 2019, 28(3): 1532-1543. [12] 龚浩, 梁建权, 王建, 等. 复合绝缘子及金具抗风性能本质提升方法[J]. 电瓷避雷器, 2021(6): 177-183. Gong Hao, Liang Jianquan, Wang Jian, et al.Method to improve wind resistance performance of composite insulator and hardware[J]. Insulators and Surge Arresters, 2021(6): 177-183. [13] 高旭, 曾文君, 谢恒, 等. 地线复合绝缘子及金具防风探讨[J]. 电瓷避雷器, 2018(3): 190-194, 201. Gao Xu, Zeng Wenjun, Xie Heng, et al.Wind prevention discussion of ground-wires composite insulator and metal fittings[J]. Insulators and Surge Arresters, 2018(3): 190-194, 201. [14] 马钢, 谢金华. 110 kV、220 kV大风区防风偏复合绝缘子[J]. 电瓷避雷器, 2012(3): 15-18. Ma Gang, Xie Jinhua.The windage protection composite insulator in 110 kV and 220 kV strong wind area[J]. Insulators and Surge Arresters, 2012(3): 15-18. [15] 朱正一, 贾志东, 马国祥, 等. 强风区750 kV复合绝缘子抗风性能研究[J]. 中国电机工程学报, 2015, 35(21): 5648-5655. Zhu Zhengyi, Jia Zhidong, Ma Guoxiang, et al.Study on wind resistance performance of 750 kV composite insulators utilized in storm-wind region[J]. Proceedings of the CSEE, 2015, 35(21): 5648-5655. [16] 朱勇, 张小容, 陈杰, 等. 风沙环境对复合绝缘子伞裙硅橡胶性能影响研究[J]. 电工电气, 2019(1): 56-60. Zhu Yong, Zhang Xiaorong, Chen Jie, et al.Study on influence of wind sand environment on performance of silicone rubber used for composite insulator umbrella skirt[J]. Electrotechnics Electric, 2019(1): 56-60. [17] 曹桂, 王同来, 曹保江, 等. 高速气流中沙尘对复合绝缘子闪络特性的影响研究[J]. 高压电器, 2018, 54(1): 164-169. Cao Gui, Wang Tonglai, Cao Baojiang, et al.Influence of sand dust in high speed airflow on the flashover characteristics of composite insulators[J]. High Voltage Apparatus, 2018, 54(1): 164-169. [18] 巫叶智. 高海拔地区复合绝缘子运行特性研究[D]. 合肥: 合肥工业大学, 2022. Wu Yezhi.Study on operation characteristics of composite insulator in high altitude area[D]. Hefei: Hefei University of Technology, 2022. [19] 林长凌. 车顶用复合外套绝缘子的风沙试验研究[J]. 铁道机车车辆, 2014, 34(6): 128-130. Lin Changling.Sand test study of composite jacket insulator used in the roof[J]. Railway Locomotive & Car, 2014, 34(6): 128-130. [20] 舒康, 周亮, 王文健, 等. 不同钢轨材料的风沙冲蚀磨损与损伤行为研究[J]. 摩擦学学报, 2022, 42(1): 74-84. Shu Kang, Zhou Liang, Wang Wenjian, et al.Windblown sand erosion wear and damage behaviors of different rail steels[J]. Tribology, 2022, 42(1): 74-84. [21] 郝贠洪, 李永. 风沙环境下钢结构涂层低角度冲蚀特性研究[J]. 摩擦学学报, 2013, 33(4): 343-348. Hao Yunhong, Li Yong.Erosion-behaviors of the coating on steel structure eroded at low erosion-angle in sandstorm[J]. Tribology, 2013, 33(4): 343-348. [22] 高津, 张永, 王健, 等. 挟沙风冲蚀风力机叶片涂层磨损研究[J]. 太阳能学报, 2020, 41(7): 367-371. Gao Jin, Zhang Yong, Wang Jian, et al.Study on coatings erosion of wind turbine blades under sand-carrying wind[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 367-371. [23] 杜国正. 风力机叶片涂层风沙冲蚀室的设计及试验研究[D]. 呼和浩特: 内蒙古农业大学, 2020. Du Guozheng.Design and experimental study of wind erosion chamber of wind turbine blade coating[D]. Hohhot: Inner Mongolia Agricultural University, 2020. [24] Hagen L J, Skidmore E L.Wind erosion and visibility problems[J]. Transactions of the American Society of Agricultural Engineers, 1977, 20(5): 898-903. [25] 王海涛, 王彦岭, 李书舸, 等. 不同电流下Ce掺杂AgCuO触头材料转移行为研究[J]. 电工技术学报, 2025, 40(2): 574-586. Wang Haitao, Wang Yanling, Li Shuge, et al.Study of materials transfer behavior of Ce-doped AgCuO contact materials at different current levels[J]. Trans-actions of China Electrotechnical Society, 2025, 40(2): 574-586. [26] 程洋, 吕栎, 夏令志, 等. HTV硅橡胶复合绝缘子伞裙的热老化特性分析[J]. 高压电器, 2024, 60(4): 49-55. Cheng Yang, Lü Li, Xia Lingzhi, et al.Thermal aging characteristics analysis of HTV silicone rubber composite insulator shed[J]. High Voltage Apparatus, 2024, 60(4): 49-55. [27] Chen Lie, Nie Qilu, Hu Tao, et al.Hydrophobic recovery of femtosecond laser processed silicone rubber insulator surfaces[J]. Journal of Applied Polymer Science, 2021, 138(33): 50835. [28] 贺海. 青海电网架空输电线路运行工况分析及防御能力提升[D]. 西安: 西安理工大学, 2014. He Hai.Enhancing the operating condition analysis and defense ability of transmission line of Qinghai power grid[D]. Xi’an: Xi’an University of Technology, 2014. [29] 詹学贵, 张红岩, 陈京, 等. 热硫化硅橡胶耐高温性能的影响因素探讨[J]. 有机硅材料, 2024, 38(6): 47-54, 66. Zhan Xuegui, Zhang Hongyan, Chen Jing, et al.Influence factors on heat resistance of HTV silicone rubber[J]. Silicone Material, 2024, 38(6): 47-54, 66.