Analysis of Short-Circuit Withstand Time of SiC MOSFET and Short-Circuit Protection Based on di/dt-PMOS
Xie Jiaming1, Wei Jinxiao2, Wu Binbing1, Feng Hao1, Ran Li1
1. State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China; 2. School of Electrical Engineering and Automation Hefei University of Technology Hefei 230000 China
Abstract:The short-circuit tolerance of SiC MOSFETs is directly related to the heat generated during the short-circuit process, which is, in turn, directly related to the short-circuit current. Measuring short-circuit current characteristic curves under various parameters, including bus voltage, drive voltage, drive resistance, main circuit parasitic inductance, and gate threshold voltage, is essential. The impact of each parameter on the short-circuit current is analyzed to provide solutions for increasing the short-circuit withstand time (SCWT) of SiC MOSFETs. The drive voltage significantly influence the short-circuit current among these parameters, and lower gate voltage reduces the short-circuit current. Reducing the drive voltage can increase the SCWT of SiC MOSFETs. Additionally, the SCWT of SiC MOSFETs determines the maximum time for short-circuit protection actions. As a result, the settings of these different parameters directly affect the design of SiC MOSFET short-circuit protection circuits. In traditional SiC MOSFET short-circuit protection strategies, the induced voltage generated by the parasitic inductance between the Kelvin source and power source, in conjunction with an RC filter, charges the capacitor (C) when the SiC MOSFET current changes, providing real-time feedback on the magnitude of the short-circuit current through the voltage across C. When the voltage across C exceeds a set value, the state of the SiC MOSFET is regarded as a short circuit. However, this traditional method has inconsistent short-circuit current thresholds for triggering short-circuit protection actions in hard switching faults (HSF) and fault under load (FUL), leading to the failure of short-circuit protection. Capacitor discharge is the main reason when the SiC MOSFET is normally turned on, resulting in a high short-circuit current threshold in the FUL state compared to the HSF state. Therefore, this paper proposes a short-circuit protection strategy based on di/dt-PMOS. This strategy places the PMOS's drain and source in series between the parasitic inductance and C. The unidirectional conductivity of the parasitic diode in the PMOS prevents the discharge of C when the SiC MOSFET is normally turned on, and the gate of the PMOS connecting to the SiC MOSFET's gate drive resets the discharge of C when the SiC MOSFET is turned off. It avoids complex discharge reset circuits for C and ensures the consistency of the short-circuit protection current threshold in both HSF and FUL states. Practical measurements were conducted under different bus voltages and various initial junction temperatures. The proposed short-circuit protection strategy shows a minimum difference rate of only 3% in short circuits, while the traditional protection strategy exhibits a difference rate of 42%. The results demonstrate the effectiveness of the di/dt-PMOS-based short-circuit protection strategy for SiC MOSFETs.
谢佳明, 魏金萧, 吴彬兵, 丰昊, 冉立. SiC MOSFET的短路耐受时间分析及其基于di/dt-PMOS的短路保护[J]. 电工技术学报, 2025, 40(16): 5081-5091.
Xie Jiaming, Wei Jinxiao, Wu Binbing, Feng Hao, Ran Li. Analysis of Short-Circuit Withstand Time of SiC MOSFET and Short-Circuit Protection Based on di/dt-PMOS. Transactions of China Electrotechnical Society, 2025, 40(16): 5081-5091.
[1] 邹铭锐, 曾正, 孙鹏, 等. 基于变电阻驱动的SiC器件开关轨迹协同调控[J]. 电工技术学报, 2023, 38(16): 4286-4300. Zou Mingrui, Zeng Zheng, Sun Peng, et al.Coordinated switching trajectory regulation of SiC device using variable resistance gate driver[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4286-4300. [2] 王旭东, 朱义诚, 赵争鸣, 等. 驱动回路参数对碳化硅MOSFET开关瞬态过程的影响[J]. 电工技术学报, 2017, 32(13): 23-30. Wang Xudong, Zhu Yicheng, Zhao Zhengming, et al.Impact of gate-loop parameters on the switching behavior of SiC MOSFETs[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 23-30. [3] 谭亚雄, 张梦洋, 刘元, 等. 一种连续函数描述的高精度SiC MOSFET模型[J]. 电工技术学报, 2024, 39(18): 5719-5731. Tan Yaxiong, Zhang Mengyang, Liu Yuan, et al.A high-precision SiC MOSFET model described by continuous function[J]. Transactions of China Elec- trotechnical Society, 2024, 39(18): 5719-5731. [4] 吴海富, 张建忠, 赵进, 等. SiC MOSFET短路检测与保护研究综述[J]. 电工技术学报, 2019, 34(21): 4519-4528. Wu Haifu, Zhang Jianzhong, Zhao Jin, et al.Review of short-circuit detection and protection of silicon carbide MOSFETs[J]. Transactions of China Elec- trotechnical Society, 2019, 34(21): 4519-4528. [5] Yang Yuan, Wen Yang, Gao Yong.A novel active gate driver for improving switching performance of high-power SiC MOSFET modules[J]. IEEE Transa- ctions on Power Electronics, 2019, 34(8): 7775-7787. [6] 邵伟华, 冉立, 曾正, 等. SiC MOSFET短路特性评估及其温度依赖性模型[J]. 中国电机工程学报, 2018, 38(7): 2121-2131, 2227. Shao Weihua, Ran Li, Zeng Zheng, et al.Short-circuit evaluation and temperature-dependent model of SiC MOSFET[J]. Proceedings of the CSEE, 2018, 38(7): 2121-2131, 2227. [7] 康建龙, 辛振, 陈建良, 等. SiC MOSFET短路失效与退化机理研究综述及展望[J]. 中国电机工程学报 2021, 41(3): 1069-1083. Kang Jianlong, Xin Zhen, Chen Jianliang, et al.Review and prospect of short-circuit failure and degradation mechanism of SiC MOSFET[J]. Pro- ceedings of the CSEE, 2021, 41(3): 1069-1083. [8] Boige F, Trémouilles D, Richardeau F.Physical origin of the gate current surge during short-circuit operation of SiC MOSFET[J]. IEEE Electron Device Letters, 2019, 40(5): 666-669. [9] Ouyang Wenyuan, Sun Pengju, Xie Minghang, et al.A fast short-circuit protection method for SiC MOSFET based on indirect power dissipation level[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 8825-8829. [10] Wen Yang, Yang Yuan, Gao Yong.Active gate driver for improving current sharing performance of paralleled high-power SiC MOSFET modules[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1491-1505. [11] An Junjie, Namai M, Yano H, et al.Investigation of robustness capability of -730 V P-channel vertical SiC power MOSFET for complementary inverter applications[J]. IEEE Transactions on Electron Devices, 2017, 64(10): 4219-4225. [12] Nguyen T T, Ahmed A, Thang T V, et al.Gate oxide reliability issues of SiC MOSFETs under short-circuit operation[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2445-2455. [13] Romano G, Fayyaz A, Riccio M, et al.A com- prehensive study of short-circuit ruggedness of silicon carbide power MOSFETs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 978-987. [14] 李腾, 辛振, 石亚飞, 等. 用于SiC MOSFET短路保护的平面型差分罗氏线圈建模与设计方法[J]. 电源学报, 2025, 23(1): 219-228. Li Teng, Xin Zhen, Shi Yafei, et al.Modeling and designing method for planar differential rogowski coil for SiC MOSFET short-circuit protection[J]. Journal of Power Supply, 2025, 23(1): 219-228. [15] Wang Heng, Zhao Jia, Zheng Ziqing, et al.Driving a silicon carbide power MOSFET with a fast short circuit protection[C]//2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Xi’an, China, 2018: 260-265. [16] Kanale A, Baliga B J.A new user-configurable method to improve short-circuit ruggedness of 1.2-kV SiC power MOSFETs[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2059-2067. [17] 罗皓泽, 高洪艺, 朱安康, 等. 基于换流-短路双回路解耦的SiC MOSFET功率器件抗短路封装构型设计[J]. 中国电机工程学报, 2023, 43(7): 2781-2790. Luo Haoze, Gao Hongyi, Zhu Ankang, et al.Anti- short-circuit packaging structure of SiC MOSFET power device with commutation-short circuit path decoupling[J]. Proceedings of the CSEE, 2023, 43(7): 2781-2790. [18] Ouyang Wenyuan, Sun Pengju, Xie Minghang, et al.A gate voltage clamping method to improve the short-circuit characteristic of SiC MOSFET[C]//2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS), Guangzhou, China, 2023: 287-292. [19] 胡亮灯, 孙驰, 陈玉林, 等. 大功率IGBT的短路故障检测[J]. 电工技术学报, 2018, 33(11): 2592-2603. Hu Liangdeng, Sun Chi, Chen Yulin, et al.Short- circuit fault detection for high-power IGBT[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2592-2603. [20] Zhang Xuan, Li He, Brothers J A, et al.A gate drive with power over fiber-based isolated power supply and comprehensive protection functions for 15-kV SiC MOSFET[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 946-955. [21] Ji Shiqi, Laitinen M, Huang Xingxuan, et al.Short-circuit characterization and protection of 10-kV SiC mosfet[J]. IEEE Transactions on Power Elec- tronics, 2019, 34(2): 1755-1764. [22] 文阳, 杨媛, 宁红英, 等. SiC MOSFET短路保护技术综述[J]. 电工技术学报, 2022, 37(10): 2538-2548. Wen Yang, Yang Yuan, Ning Hongying, et al.Review on short-circuit protection technology of SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2538-2548. [23] Wang Jun, Mocevic S, Burgos R, et al.High- scalability enhanced gate drivers for SiC MOSFET modules with transient immunity beyond 100 V/ns[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10180-10199. [24] Li Xinchang, Xu Dawei, Zhu Hongyue, et al.Indirect IGBT over-current detection technique via gate voltage monitoring and analysis[J]. IEEE Transa- ctions on Power Electronics, 2019, 34(4): 3615-3622. [25] Wang Jun, Shen Zhiyu, Burgos R, et al.Integrated switch current sensor for shortcircuit protection and current control of 1.7-kV SiC MOSFET modules[C]//2016 IEEE Energy Conversion Congress and Expo- sition (ECCE), Milwaukee, WI, USA, 2016: 1-7. [26] 张经纬, 李晓辉, 谭国俊. 基于PCB罗氏线圈的SiC MOSFET短路保护研究[J]. 电力电子技术, 2017, 51(8): 26-29. Zhang Jingwei, Li Xiaohui, Tan Guojun.The PCB rogowski coil based on short-circuit protection of SiC MOSFET[J]. Power Electronics, 2017, 51(8): 26-29. [27] Shao Shuai, Yu Naipeng, Xu Xiaopeng, et al.Tunnel magnetoresistance-based short-circuit and over- current protection for IGBT module[J]. IEEE Transa- ctions on Power Electronics, 2020, 35(10): 10930-10944. [28] 杨媛, 文阳. 大功率IGBT驱动与保护技术[M]. 北京: 科学出版社, 2018. [29] Maerz A, Bertelshofer T, Horff R, et al.Requirements of short-circuit detection methods and turn-off for wide band gap semiconductors[C]//9th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 2016: 1-6. [30] Wang Zhiqiang, Shi Xiaojie, Xue Yang, et al.Design and performance evaluation of overcurrent protection schemes for silicon carbide (SiC) power MOSFETs[C]//2013 IEEE Energy Conversion Congress and Expo- sition, Denver, CO, USA, 2013: 5418-5425.