Abstract:Fractional-order elements (FOEs) serve as fundamental components in fractional-order circuits, forming the cornerstone of research into fractional-order circuit systems. Unlike single-component counterparts, the multi-component method offers greater flexibility in selecting constituent elements, enabling the adjustment of order and impedance coefficients for enhanced practicality. This paper provides a comprehensive overview of prevailing construction methods to facilitate the selection of appropriate multi-component FOEs for specific application needs. These methods are classified into three categories based on the type of constituent devices: passive devices, operational amplifiers, and power electronic converters. In the construction method based on passive devices, two approaches involving Foster RLC ladder circuits are discussed. Passive RLC networks are used to create circuits that match the impedance characteristics of the transfer function. Reducing phase error requires increasing the order and using numerous components, leading to complex structures and cumbersome calculations. When standard off-the-shelf components cannot be used, replacing analytical parameters with standard ones increases the phase angle deviation. Adjusting the FOE order or impedance coefficients requires replacing all circuit components. This method is most suitable for fixed FOE order and impedance coefficients, which are effective in medium to low-frequency scenarios. Next, the paper introduces the construction method based on operational amplifiers. The method of constructing FOEs based on generalized impedance converter (GIC) circuits can realize FOEs with orders varying from -2 to 2. However, the limited open-loop gain and gain instability of operational amplifiers often result in significant deviations of the obtained FOE performance from its ideal characteristics. Therefore, exploring how to use other active devices, such as operational transconductance amplifiers (OTA) and current feedback operational amplifiers (CFOA), to construct FOEs is an exploration direction. GIC circuits offer great integration and functionality, making them suitable for applications where precise impedance and phase characteristics are crucial. The construction method based on power electronic converters is also discussed in detail. Multi-component FOEs based on power electronic converters have wide applications because their power level depends on the inverter, and their order and impedance can be adjusted by changing the control parameters. However, different structures of filters affect the operating performance of fractional-order elements. Therefore, exploring the application of different filter structures on multi-component FOEs and optimizing the parameters of the filters become the direction of development for power electronic converter-based FOEs. Power electronic converters provide the advantage of handling higher power levels and dynamic adaptability. The ability to digitally control the fractional order and impedance in real-time makes these elements highly versatile. Lastly, this paper proposes a three-phase fractional-order electrical spring (TPFES). TPFES controls the order of the equivalent fractional-order capacitance of each phase and the pseudo-capacitance. The effect of stabilizing the load voltage is realized, the power factor is improved, and the power is balanced. The application in grid power compensation demonstrates that multi-component FOEs can effectively enhance the performance of practical circuit systems. This work provides a reference for future applications of fractional order components in electrical engineering.
王佳豪, 丘东元, 张波, 陈艳峰. 多组件分数阶元件的实现方法及其应用[J]. 电工技术学报, 2025, 40(8): 2365-2379.
Wang Jiahao, Qiu Dongyuan, Zhang Bo, Chen Yanfeng. Realization Approach of Multi-Component Fractional-Order Element and Its Application. Transactions of China Electrotechnical Society, 2025, 40(8): 2365-2379.
[1] Impedance spectroscopy: theory, experiment,applications[M]. Third Edition. Hoboken, NJ: Wiley, 2018. [2] Gabano J D, Poinot T, Kanoun H.Identification of a thermal system using continuous linear parameter-varying fractional modelling[J]. IET Control Theory & Applications, 2011, 5(7): 889-899. [3] Elwakil A S.Fractional-order circuits and systems: an emerging interdisciplinary research area[J]. IEEE Circuits and Systems Magazine, 2010, 10(4): 40-50. [4] Podlubny I.Fractional-order systems and PI/sup/spl lambda//D/sup/splmu//-controllers[J]. IEEE Transa-ctions on Automatic Control, 1999, 44(1): 208-214. [5] 王瑞萍, 皮佑国. 基于分数阶PI速度控制器的永磁同步电动机控制[J]. 电工技术学报, 2012, 27(11): 69-75. Wang Ruiping, Pi Youguo.Fractional-order PI speed controller for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 69-75. [6] 赵鑫宇, 王丽梅. 永磁直线同步电机自适应分数阶终端滑模控制[J]. 电工技术学报, 2023, 38(20): 5434-5443. Zhao Xinyu, Wang Limei.Adaptive fractional-order terminal sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5434-5443. [7] 张晓超, 李虹, 苏文哲, 等. DC-DC变换器分数阶PIλ控制与稳定性分析研究[J]. 电工电能新技术, 2019, 38(5): 21-31. Zhang Xiaochao, Li Hong, Su Wenzhe, et al.Study on fractional-order PIλ control and stability analysis of DC-DC converter[J]. Advanced Technology of Elec-trical Engineering and Energy, 2019, 38(5): 21-31. [8] Mijat N, Jurisic D, Moschytz G S.Analog modeling of fractional-order elements: a classical circuit theory approach[J]. IEEE Access, 2021, 9: 110309-110331. [9] Baleanu D, Golmankhaneh A K, Golmankhaneh A K, et al.Newtonian law with memory[J]. Nonlinear Dynamics, 2010, 60(1): 81-86. [10] Piotrowska E, Rogowski K.Time-domain analysis of fractional electrical circuit containing two ladder elements[J]. Electronics, 2021, 10(4): 475. [11] 王辉, 严欢, 张晓滨, 等. 基于分数阶的锂电池SOC和SOH联合在线估计[J/OL]. 电源学报, 2024: 1-14. (2024-01-11). https://kns.cnki.net/kcms/detail12.1420.tm.20240110.1721.002.html. Wang Hui, Yan Huan, Zhang Xiaobin, et al. Joint online estimation of SOC and SOH for lithium batteries based on fractional order models[J/OL]. Journal of Power Supply, 2024: 1-14. (2024-01-11). https://kns.cnki.net/kcms/detail/12.1420.tm.20240110.1721.002.html. [12] 赵靖英, 胡劲, 张雪辉, 等. 基于锂电池模型和分数阶理论的SOC-SOH联合估计[J]. 电工技术学报, 2023, 38(17): 4551-4563. Zhao Jingying, Hu Jin, Zhang Xuehui, et al.Joint estimation of the SOC-SOH based on lithium battery model and fractional order theory[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4551-4563. [13] Zhang Lei, Hu Xiaosong, Wang Zhenpo, et al.Fractional-order modeling and state-of-charge esti-mation for ultracapacitors[J]. Journal of Power Sources, 2016, 314: 28-34. [14] 邓巧, 丘东元, 顾文超, 等. 超级电容器分数阶模型的分频段参数辨识方法[J]. 储能科学与技术, 2022, 11(10): 3371-3380. Deng Qiao, Qiu Dongyuan, Gu Wenchao, et al.Parameter-identification method for fractional-order models of supercapacitors based on frequency-band division[J]. Energy Storage Science and Technology, 2022, 11(10): 3371-3380. [15] 余波, 梁锐, 蒲亦非, 等. 超级电容器恒流充电的时域分数阶电路模型[J]. 电工技术学报, 2019, 34(17): 3533-3541. Yu Bo, Liang Rui, Pu Yifei, et al.Time-domain fractional circuit model for constant current charging of supercapacitor[J]. Transactions of China Electro-technical Society, 2019, 34(17): 3533-3541. [16] Xie Fan, Yang Zhiqiang, Yang Chen, et al.Constru-ction and experimental realization of the fractional-order transformer by oustaloup rational approxi-mation method[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(4): 1550-1554. [17] Wei Zhihao, Zhang Bo, Jiang Yanwei.Analysis and modeling of fractional-order Buck converter based on Riemann-liouville derivative[J]. IEEE Access, 2019, 7: 162768-162777. [18] Fang Shucheng, Wang Xiaogang.Modeling and analysis method of fractional-order Buck-Boost converter[J]. International Journal of Circuit Theory and Applications, 2020, 48(9): 1493-1510. [19] Adhikary A, Khanra M, Pal J, et al.Realization of fractional order elements[J]. INAE Letters, 2017, 2(2): 41-47. [20] Sivarama Krishna M, Das S, Biswas K, et al.Fabrication of a fractional order capacitor with desired specifications: a study on process identi-fication and characterization[J]. IEEE Transactions on Electronic Devices, 2011, 58(11): 4067-4073. [21] Samavati H, Hajimiri A, Shahani A R, et al.Fractal capacitors[J]. IEEE Journal of Solid-State Circuits, 1998, 33(12): 2035-2041. [22] Mohapatra A S, Sarkar S, Biswas K.Fabricating solid state fractional capacitor in the frequency range of mHz to kHz[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11): 2035-2038. [23] Adhikary A, Sen P, Sen S, et al.Design and performance study of dynamic fractors in any of the four quadrants[J]. Circuits, Systems, and Signal Processing, 2016, 35(6): 1909-1932. [24] Podlubny I.Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. Elsevier, 1998. [25] José Francisco G A, Juan R G, Manuel G C, et al. Fractional RC and LC electrical circuits[J]. Ingeniería, Investigacióny Tecnología, 2014, 15(2): 311-319. [26] Zhang Li, Kartci A, Elwakil A, et al.Fractional-order inductor: design, simulation, and implementation[J]. IEEE Access, 2021, 9: 73695-73702. [27] Kartci A, Agambayev A, Farhat M, et al.Synthesis and optimization of fractional-order elements using a genetic algorithm[J]. IEEE Access, 2019, 7: 80233-80246. [28] Jiang Yanwei, Zhang Bo.High-power fractional-order capacitor with 1<α<2 based on power converter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3157-3164. [29] 卢曰海, 丘东元, 张波, 等. 大功率分数阶电感的电路实现[J]. 电源学报, 2018, 16(5): 147-152, 166. Lu Yuehai, Qiu Dongyuan, Zhang Bo, et al.Circuit realization of high-power fractional inductor[J]. Journal of Power Supply, 2018, 16(5): 147-152, 166. [30] 尹政, 胡存刚, 芮涛, 等. LC滤波型电压源逆变器无模型预测电压控制策略[J]. 电工技术学报, 2023, 38(14): 3723-3732. Yin Zheng, Hu Cungang, Rui Tao, et al.Model-free predictive voltage control strategy for LC-filtered voltage source inverter[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3723-3732. [31] Oustaloup A, Levron F, Mathieu B, et al.Frequency-band complex noninteger differentiator: characteri-zation and synthesis[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(1): 25-39. [32] 柴秀慧, 曹晗, 张波, 等. Boost变换器全分数阶化系统分析与控制性能研究[J]. 电源学报, 2019, 17(6): 27-33. Chai Xiuhui, Cao Han, Zhang Bo, et al.Research on analysis and control performance of full fractional-order boost converter system[J]. Journal of Power Supply, 2019, 17(6): 27-33. [33] 沈姝衡, 方天治, 章益凡. 高带宽数字控制LCL型并网逆变器及其提高并网系统鲁棒性的谐振抑制技术研究[J]. 电工技术学报, 2022, 37(21): 5548-5561. Shen Shuheng, Fang Tianzhi, Zhang Yifan.A high-bandwidth digital-control LCL-type grid-tied inverter and resonance-suppressing technique for improving the robustness of grid-connected system[J]. Transa-ctions of China Electrotechnical Society, 2022, 37(21): 5548-5561. [34] 张洪亮, 张子成, 陈杰, 等. 自适应三次谐波注入的回接型LCL光伏逆变器共模谐振电流抑制方法[J]. 电工技术学报, 2023, 38(1): 220-233. Zhang Hongliang, Zhang Zicheng, Chen Jie, et al.Common-mode resonant current suppression for back-connected LCL photovoltaic inverter using adaptive third harmonic injection[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 220-233. [35] 刘飞, 查晓明, 段善旭. 三相并网逆变器LCL滤波器的参数设计与研究[J]. 电工技术学报, 2010, 25(3): 110-116. Liu Fei, Zha Xiaoming, Duan Shanxu.Design and research on parameter of LCL filter in three-phase grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2010, 25(3): 110-116. [36] 刘波, 杨旭, 孔繁麟, 等. 三相光伏并网逆变器控制策略[J]. 电工技术学报, 2012, 27(8): 64-70. Liu Bo, Yang Xu, Kong Fanlin, et al.Control strategy study for three phase photovoltaic grid-connected inverters[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 64-70. [37] 刘鹏飞, 卓菡. 带LCL滤波的并网逆变器的比例谐振控制[J]. 电气技术, 2013(1): 59-61. Liu Pengfei, Zhuo Han.Proportional-resonant control of a grid connected inverter with LCL filter[J]. Electrical Engineering, 2013(1): 59-61. [38] 张波, 荣超, 江彦伟, 等. 分数阶无线电能传输机理的提出及研究进展[J]. 电力系统自动化, 2022, 46(4): 197-207. Zhang Bo, Rong Chao, Jiang Yanwei, et al.Proposal process and research progress of fractional-order wireless power transfer mechanism[J]. Automation of Electric Power Systems, 2022, 46(4): 197-207. [39] 疏许健, 张波. 降低整数阶无线电能传输谐振频率的分数阶方法[J]. 电工技术学报, 2017, 32(18): 83-89. Shu Xujian, Zhang Bo.A fractional-order method to reduce the resonant frequency of integer-order wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 83-89. [40] Jiang Yanwei, Zhang Bo.A fractional-order wireless power transfer system insensitive to resonant frequ-ency[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5496-5505. [41] Rong Chao, Zhang Bo, Jiang Yanwei, et al.A misalignment-tolerant fractional-order wireless charging system with constant current or voltage output[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 11356-11368. [42] Zhang Jingyu, He Liangzong, Lin Zhile.Fractional-order-based low-order harmonic current suppression method considering asymmetrical capacitor para-meters[J]. IEEE Transactions on Power Electronics, 2023, 38(3): 3775-3784. [43] 林智乐, 张靖雨, 何良宗. 基于分数阶电容的多个低次电流谐波抑制方法[J]. 中国电机工程学报, 2022, 42(24): 8921-8932. Lin Zhiyue, Zhang Jingyu, He Liangzong.Method of multiple low-order harmonic currents suppression based on fractional-order capacitor[J]. Proceedings of the CSEE, 2022, 42(24): 8921-8932. [44] Hui S Y, Lee C K, Wu F F.Electric springs-a new smart grid technology[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1552-1561. [45] Lee C K, Liu Heng, Tan S C, et al.Electric spring and smart load: technology, system-level impact, and opportunities[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(6): 6524-6544. [46] Yan Shuo, Tan S C, Lee C K, et al.Electric springs for reducing power imbalance in three-phase power systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3601-3609. [47] 贾何飞, 何英杰, 蔡雨希, 等. 电气弹簧双环解耦控制及有效运行范围研究[J]. 电工技术学报, 2020, 35(15): 3314-3326. Jia Hefei, He Yingjie, Cai Yuxi, et al.Research of the electric spring about dual-loop decoupling control and effective operation range[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3314-3326. [48] Ke Mingbin, Qiu Dongyuan, Zhang Bo, et al.An electric spring without noncritical load based on fractional-order components[J]. IEEE Journal of Emerging and Selected Topics in Industrial Elec-tronics, 2022, 3(3): 519-526.