Abstract:Different from conventional loads, pulse loads have the characteristics of low average power, high peak power, and variable pulse frequency, which bring challenges to the stable operation of power supply systems. The three-port rectifier with dual DC output ports utilizes periodic charging and discharging of the decoupling capacitor to achieve power decoupling. However, the traditional PI control used in the rectifier struggles to respond promptly to changes in pulse frequency, and the dynamic adjustment ability of the system is limited. As a typical nonlinear control method, the capacitive charge balance control can enhance dynamic regulation performance and has been successfully implemented in various fields. However, the related calculation methods are not suitable for low-frequency pulse loads. This study improves the traditional concept of capacitor charge balance control based on the power characteristics of pulse loads, considering peak voltage control of decoupling capacitor voltage. It re-derives the calculation formula to achieve capacitor charge balance and obtains the switching moment of the dynamic process rectifier's switching tube. In the steady-state operation, the system adopts PI control to achieve control accuracy. When the pulse frequency changes, the system switches to the capacitor energy balance control method. According to the calculated switching moment, the active current of the AC source is controlled to meet the energy balance after one rise and one fall. After the dynamic process is completed, the system switches back to PI control. The study also analyzes the influence of different decoupling capacitor parameters on the dynamic control process of the proposed method. Since the switching moment involves the capacitor product and voltage ripple, the calculated results are generally small. Simulation results demonstrate that changing capacitor parameters has a limited impact on the control performance of the proposed solution. An experimental platform was built to conduct sudden increases in pulse load frequency. The proposed control method was compared with traditional PI and current feedforward PI controls. When a sudden increase in pulse frequency was detected, the capacitor energy balance control required only one pulse cycle of adjustment time to reach a steady state, which was significantly shorter than the other two methods and effectively suppressed voltage ripple. Although reducing the decoupling capacitor value increases the voltage drop at the moment of switching load, the system maintains good dynamic control performance. The following conclusions are drawn. (1) Traditional dual-loop PI control is limited in dynamic response capability when sudden increases in pulse load frequency due to the limitations of the regulator and low- frequency pulse load. Although using feedforward current can optimize control effects, it cannot achieve the best performance. (2) Traditional capacitor charge balance control, which does not consider the existence of pulse loads, cannot be directly applied to three-port rectifiers. (3) The application of capacitor energy balance control can effectively enhance the system's dynamic regulation performance, and capacitor parameters have neglectable effects on the proposed method, exhibiting good adjustment capability under different capacitor parameters.
[1] 张卓然, 许彦武, 姚一鸣, 等. 多电飞机电力系统及其关键技术[J]. 南京航空航天大学学报, 2022, 54(5): 969-984. Zhang Zhuoran, Xu Yanwu, Yao Yiming, et al.Electric power system and key technologies of more electric aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 969-984. [2] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15): 3943-3959. Ma Weiming, Lu Junyong.Research progress and challenges of electromagnetic launch technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959. [3] 李锴, 李建科, 季少卫, 等. 一种现代雷达非线性脉冲特性的模拟装置[J]. 现代雷达, 2016, 38(3): 91-94. Li Kai, Li Jianke, Ji Shaowei, et al.A simulation device based on modern radar with continuous pulse characteristic[J]. Modern Radar, 2016, 38(3): 91-94. [4] 刘正春, 王勇, 尹志勇, 等. 有限容量系统脉冲性负荷建模与仿真[J]. 华北电力大学学报(自然科学版), 2014, 41(1): 33-37. Liu Zhengchun, Wang Yong, Yin Zhiyong, et al.Modeling and simulation of pulsed power load inlimited capacity system[J]. Journal of North China Electric Power University (Natural Science Edition), 2014, 41(1): 33-37. [5] 刘正春, 朱长青, 赵锦成, 等. 独立电力系统非线性负荷暂态特性仿真[J]. 高电压技术, 2017, 43(1): 329-336. Liu Zhengchun, Zhu Changqing, Zhao Jincheng, et al.Simulations on transient characteristics of non-linear load in isolated power system[J]. High Voltage Engineering, 2017, 43(1): 329-336. [6] 孙勇, 林松, 卢胜利, 等. 长脉宽模式下雷达供电系统功率波动机理研究[J]. 电源学报, 2021, 19(3): 134-141. Sun Yong, Lin Song, Lu Shengli, et al.Study on power fluctuation mechanism of radar power system in long pulse width mode[J]. Journal of Power Supply, 2021, 19(3): 134-141. [7] 王金全, 胡亚超, 李建科, 等. 脉冲功率负载对柴油发电机组-整流器系统直流侧电压影响的试验研究[J]. 移动电源与车辆, 2015(1): 33-37. Wang Jinquan, Hu Yachao, Li Jianke, et al.Experiment research on the influence of a pulsed power load to the DC voltage of a diesel generator set-rectifier system[J]. Movable Power Station & Vehicle, 2015(1): 33-37. [8] Cao Wenping, Mecrow B C, Atkinson G J, et al.Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531. [9] 徐子梁, 任小永, 吴玲燕, 等. 航空Vienna整流器缺相控制方法[J]. 电工技术学报, 2023, 38(20): 5560-5571. Xu Ziliang, Ren Xiaoyong, Wu Lingyan, et al.A lack phase control strategy for aircraft Vienna rectifier[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5560-5571. [10] 武鸿, 王跃, 刘熠, 等. 基于广义电容电压不平衡度的MMC子模块开路故障诊断策略[J]. 电工技术学报, 2023, 38(14): 3909-3922. Wu Hong, Wang Yue, Liu Yi, et al.Open circuit fault diagnosis strategy of MMC sub-module based on generalized capacitor voltage unbalance[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3909-3922. [11] 朱建鑫. 三相交直流供电系统低频脉冲功率抑制关键技术研究[D]. 南京: 南京航空航天大学, 2020. Zhu Jianxin.Research on low frequency pulsed power suppression in three-phase AC-DC power supply systems[D]. Nan Jing: Nanjing University of Aeronautics and Astronautics, 2020. [12] 吴红飞, 朱建鑫, 陈君雨, 等. 面向高峰均功率比低频脉冲负载三相交流供电系统的电能综合补偿器[J]. 中国电机工程学报, 2020, 40(13): 4310-4319. Wu Hongfei, Zhu Jianxin, Chen Junyu, et al.A comprehensive compensator for three-phase AC power system with high peak-to-average ratio low frequency pulsed load[J]. Proceedings of the CSEE, 2020, 40(13): 4310-4319. [13] 李林, 吴红飞, 朱建鑫, 等. 集成低频脉冲功率解耦端口的机载电源系统[J]. 航空学报, 2021, 42(6): 115-124. Li Lin, Wu Hongfei, Zhu Jianxin, et al.Airborne power supply system integrating low-frequency pulse power decoupling port[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 115-124. [14] 张佐乾, 吴红飞, 杨帆, 等. 高峰均比脉冲功率独立电源系统关键技术研究综述[J]. 电气工程学报, 2023, 18(1): 43-55. Zhang Zuoqian, Wu Hongfei, Yang Fan, et al.Overview of key technologies for independent power supply systems with high peak-to-average ratio pulse power loads[J]. Journal of Electrical Engineering, 2023, 18(1): 43-55. [15] 杨帆, 李林, 朱建鑫, 等. 面向高峰均比低频脉冲功率负载的脉冲电流补偿器及其控制方法[J]. 电工技术学报, 2022, 37(16): 4193-4201. Yang Fan, Li Lin, Zhu Jianxin, et al.A pulsed current compensator and control strategy for high peakto-average-ratio low frequency pulsed load[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4193-4201. [16] Ohnishi T.Three phase PWM converter/inverter by means of instantaneous active and reactive power control[C]//Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation, Kobe, Japan, 1991: 819-824. [17] 王久和, 李华德. 一种新的电压型PWM整流器直接功率控制策略[J]. 中国电机工程学报, 2005, 25(16): 47-52. Wang Jiuhe, Li Huade.A new direct power control strategy of three phase boost type PWM rectifiers[J]. Proceedings of the CSEE, 2005, 25(16): 47-52. [18] 杨达亮, 卢子广, 杭乃善, 等. 三相电压型PWM整流器准定频直接功率控制[J]. 中国电机工程学报, 2011, 31(27): 66-73. Yang Daliang, Lu Ziguang, Hang Naishan, et al.Novel quasi direct power control for three-phase voltage-source PWM rectifiers with a fixed switching frequency[J]. Proceedings of the CSEE, 2011, 31(27): 66-73. [19] Tang Yi, Loh P C, Wang Peng, et al.One-cycle controlled three-phase PWM rectifiers with improved regulation under unbalanced and distorted input voltage conditions[C]//2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, China, 2009: 579-584. [20] 韦徵, 陈新, 陈杰, 等. 三相PFC整流器改进单周期控制策略[J]. 电工技术学报, 2014, 29(6): 196-203. Wei Zheng, Chen Xin, Chen Jie, et al.Research of improved one-cycle control strategy of three-phase PFC rectifier[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 196-203. [21] 郜羚, 王宇, 王子禹. 基于单周期控制的三输入绕组开放式永磁发电机系统动态性能[J]. 电工技术学报, 2016, 31(增刊1): 76-84. Gao Ling, Wang Yu, Wang Ziyu.Dynamic performance of three-input winding open permanent magnet generator system based on one-cycle control[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 76-84. [22] Feng Guang, Meyer E, Liu Yanfei.A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 1489-1498. [23] 刘晓东, 蒋昌虎, 邱亚杰, 等. Buck变换器动态过程电容充放电平衡控制策略[J]. 电机与控制学报, 2010, 14(6): 77-82. Liu Xiaodong, Jiang Changhu, Qiu Yajie, et al.A control algorithm based on capacitor charge balance during transient for Buck converter[J]. Electric Machines and Control, 2010, 14(6): 77-82. [24] 刘晓东, 邱亚杰, 方炜, 等. Boost变换器电容电荷平衡动态最优控制[J]. 电力自动化设备, 2011, 31(5): 63-67. Liu Xiaodong, Qiu Yajie, Fang Wei, et al.Optimal dynamic control based on capacitor charge balance for Boost converter[J]. Electric Power Automation Equipment, 2011, 31(5): 63-67. [25] 邱楹, 陈希有, 仲崇权, 等. 全负载DC-DC变换器电荷平衡数字控制[J]. 中国电机工程学报, 2013, 33(18): 40-47, 17. Qiu Ying, Chen Xiyou, Zhong Chongquan, et al.Charge balance digital control for DC-DC converters with full load range[J]. Proceedings of the CSEE, 2013, 33(18): 40-47, 17. [26] Wang Yu, Xu Xin, Fu Hongwei, et al.Charge balance control for DC/DC converter systems: from singleinput systems to multiple-input systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 206-222. [27] 王宇, 肖文妍, 郝雯娟, 等. 永磁磁通切换电机的转矩冲量平衡控制技术[J]. 中国电机工程学报, 2017, 37(22): 6577-6584, 6769. Wang Yu, Xiao Wenyan, Hao Wenjuan, et al.Research on torque impulse balance control strategy of flux-switching permanent magnet machine[J]. Proceedings of the CSEE, 2017, 37(22): 6577-6584, 6769. [28] 肖文妍, 王宇, 耿亮, 等. 单相开路情况下6/19永磁磁通切换容错电机转矩冲量平衡控制策略[J]. 电工技术学报, 2018, 33(7): 1488-1496. Xiao Wenyan, Wang Yu, Geng Liang, et al.Torque impulse balance control strategy of 6/19 FTFSPM machine under open-circuit condition[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1488-1496. [29] 顾惠, 王宇. 开路及短路组合故障下容错型永磁磁通切换电机转矩冲量平衡控制策略的研究[J]. 电工技术学报, 2020, 35(9): 1931-1944. Gu Hui, Wang Yu.Research on torque impulse balance control strategy of fault tolerant flux switching permanent magnetic motor under combined open and short circuit faults[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1931-1944. [30] 王菁, 颜建虎, 季国东, 等. 一种基于双位置观测器的永磁同步电机低速无位置传感器控制方法[J]. 电工技术学报, 2023, 38(2): 375-386. Wang Jing, Yan Jianhu, Ji Guodong, et al.A sensorless control method for permanent magnet synchronous machine based on dual position observers at low speed[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 375-386.