Abstract:The sound source localization method based on time difference of arrival (TDOA) is currently the mainstream method for fault location of gas-insulated transmission line (GIL). The GIL shell is similar to the cylindrical shell, and the acoustic wave propagating along the shell has the dispersion and multi-modal characteristics, which increases the difficulty of precise positioning. In recent years, people have studied the acoustic wave transmission process on GIL, but most of the studies have ignored the influence of guided wave characteristics on the transmission of acoustic wave, and the research results are deviated from the actual situation. In order to solve these problems, this paper proposes a GIL shell acoustic transmission analysis model considering guided wave dispersion and multi-modal characteristics, determines the guided wave mode suitable for GIL fault location and the attenuation and time delay caused by GIL non-straight tube structure, which effectively improves the fault location accuracy of GIL. Firstly, the dispersion curve of guided wave in the typical 220 kV GIL shell is drawn, and the guided wave modes in the frequency range of 0~100 kHz are determined. Secondly, a finite element model of acoustic wave transmission in the long-distance GIL straight pipe is established, and the propagation characteristics of guided waves are studied by applying different excitation to the model. According to the simulation results and the requirements of GIL sound source localization, the effective frequency band and guided wave mode suitable for fault location are determined. Thirdly, in order to study the location advantages of the selected guided wave mode in the GIL non-straight pipe section and the attenuation and time delay by the GIL non-straight pipe structure, the expansion joint, gas basin insulator and other non-straight pipe structures are added to the long-distance GIL straight pipe model. Finally, the selected guided wave mode is used for GIL field location test, and the influence of the attenuation and time delay of the GIL non-straight pipe structure are considered in the localization algorithm. The effectiveness of the analysis model is verified according to the location results. The results show that the propagation distance required for F(1, 1) mode to separate from the original wave packet is within 2 m in the 20~60 kHz frequency band. In the GIL straight pipe section, the amplitude of F(1, 1) mode is about 20 times that of the front modes, and the amplitude is attenuated up to 30% after 10m of propagation. In the process of propagation, the shape of F(1, 1) mode is more stable than the modes of the rear secondary acoustic wave. In terms of temporal and spatial distribution, it is easy to distinguish with the front and rear modes, and can be used as the preferred mode for fault location. For F(1, 1) mode, GIL non-straight pipe structures such as single-stage expansion joints, double-stage expansion joints, and gas basin insulator will cause 90%, 96%, and 60% attenuation, and 0.6 ms, 1.1 ms, 0.03 ms delay. The error of using F(1, 1) mode for fault location in an interval with the length of 20 m is about 1 m. Further considering the influence of the attenuation and time delay of the GIL non-straight pipe structure, the positioning error can be reduced to about 0.3 m, which proves the effectiveness of the analysis model in improving the fault location accuracy of GIL. The following conclusions can be drawn from the results: (1) The GIL shell acoustic transmission analysis model can effectively consider the influence of guided wave dispersion and multi-modal characteristics on GIL sound source localization, and the F(1, 1) mode has great fault location advantage. (2) The location frequency band of 20~60 kHz reduces the interference of guided wave dispersion and environmental noise to GIL sound source localization, which helps to improve the accuracy of fault location. (3) The GIL non-straight pipe structure will cause a large amplitude attenuation and a certain degree of time delay to the F(1, 1) mode. Considering the influence of the attenuation and time delay of the GIL non-straight pipe structure in fault location can make the positioning error is further reduced by more than 60%.
杜志叶, 郝兆扬, 赵鹏飞, 王恒, 郝乾. 适用于声源定位的气体绝缘输电线路超声导波传播特性研究[J]. 电工技术学报, 2024, 39(3): 852-862.
Du Zhiye, Hao Zhaoyang, Zhao Pengfei, Wang Heng, Hao Qian. Research on Propagation Characteristics of Gas-Insulated Transmission Line Ultrasonic Guided Wave for Sound Source Localization. Transactions of China Electrotechnical Society, 2024, 39(3): 852-862.
[1] 邱玥, 陆帅, 陆海, 等. 综合能源系统灵活性:基本内涵、数学模型与研究框架[J]. 电力系统自动化, 2022, 46(17): 16-43. Qiu Yue, Lu Shuai, Lu Hai, et al.Flexibility of integrated energy system: basic connotation, mathematical model and research framework[J]. Automation of Electric Power Systems, 2022, 46(17): 16-43. [2] 孟沛彧, 向往, 潘尔生, 等. 分址建设直流输电系统拓扑方案与运行特性研究[J]. 电工技术学报, 2022, 37(19): 4808-4822. Meng Peiyu, Xiang Wang, Pan Ersheng, et al.Research on topology and operation characteristics of HVDC transmission system based on site-division construction[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4808-4822. [3] 杜伯学, 董佳楠, 梁虎成. 特高压GIL非均匀热气流特性与三支柱绝缘子绝缘裕度分析[J]. 电工技术学报, 2023, 38(6): 1678-1686. Du Boxue, Dong Jianan, Liang Hucheng.Non-uniform gas convection in UHV-GIL and insulation margin analysis for tri-post insulator[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1678-1686. [4] 薛乃凡, 李庆民, 刘智鹏, 等. 微纳粉尘运动行为与微弱放电探测技术研究进展[J]. 电工技术学报, 2022, 37(13): 3380-3392. Xue Naifan, Li Qingmin, Liu Zhipeng, et al.Research advances of the detection technology for kinetic behavior and weak discharge of the micro-nano dust[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3380-3392. [5] 刘通, 腾云, 杨景刚, 等. 基于可听声的GIL设备交流耐压击穿放电定位研究[J]. 高压电器, 2021, 57(1): 26-32, 40. Liu Tong, Teng Yun, Yang Jinggang, et al.Study on AC withstand voltage breakdown discharge location of GIL equipment based on audible-signal[J]. High Voltage Apparatus, 2021, 57(1): 26-32, 40. [6] 李玉杰, 王枭, 杨景刚, 等. 基于DOA估计的GIL击穿放电定位方法研究[J]. 高压电器, 2022, 58(9): 94-101. Li Yujie, Wang Xiao, Yang Jinggang, et al.Research on location method of GIL breakdown and discharge based on DOA estimation[J]. High Voltage Apparatus, 2022, 58(9): 94-101. [7] 罗楚军, 岳浩, 李健, 等. 基于超声波法的长距离超高压GIL电弧故障定位[J]. 电力与能源, 2021, 42(1): 39-45, 136. Luo Chujun, Yue Hao, Li Jian, et al.Long-distance UHV GIL arc fault location based on ultrasonic method[J]. Power & Energy, 2021, 42(1): 39-45, 136. [8] Lundgaard L E.Partial discharge. XIII. Acoustic partial discharge detection-fundamental considerations[J]. IEEE Electrical Insulation Magazine, 1992, 8(4): 25-31. [9] Kranz H G.Fundamentals in computer aided PD processing, PD pattern recognition and automated diagnosis in GIS[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(1): 12-20. [10] 李成榕, 王浩, 郑书生. GIS局部放电的超声波检测频带试验研究[J]. 南方电网技术, 2007, 1(1): 41-45. Li Chengrong, Wang Hao, Zheng Shusheng.Experiment research on ultrasonic band selection of GIS partial discharge detection[J]. Southern Power System Technology, 2007, 1(1): 41-45. [11] 陈隽, 刘文浩, 卢军, 等. GIS中不同位置电晕放电的超声波信号特性[J]. 高电压技术, 2011, 37(12): 3006-3011. Chen Jun, Liu Wenhao, Lu Jun, et al.Acoustic signal characteristics of corona discharge in different location of GIS[J]. High Voltage Engineering, 2011, 37(12): 3006-3011. [12] 刘君华, 姚明, 黄成军, 等. 采用声电联合法的GIS局部放电定位试验研究[J]. 高电压技术, 2009, 35(10): 2458-2463. Liu Junhua, Yao Ming, Huang Chengjun, et al.Experimental research on partial discharge localization in GIS using ultrasonic associated with electromagnetic wave method[J]. High Voltage Engineering, 2009, 35(10): 2458-2463. [13] 宋蓓华. 基于声电联合的GIS局部放电带电检测技术研究[D]. 上海: 上海交通大学, 2012. Song Beihua.Based on the UHF and UE combined GIS partial discharge on-line detection technology research[D]. Shanghai: Shanghai Jiao Tong University, 2012. [14] Lundgaard L E, Runde M, Skyberg B.Acoustic diagnosis of gas insulated substations: a theoretical and experimental basis[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1751-1759. [15] 黎大健, 梁基重, 步科伟, 等. GIS中典型缺陷局部放电的超声波检测[J]. 高压电器, 2009, 45(1): 72-75. Li Dajian, Liang Jizhong, Bu Kewei, et al.Ultrasonic detection of partial discharge on typical defects in GIS[J]. High Voltage Apparatus, 2009, 45(1): 72-75. [16] 腾云, 杨景刚, 马勇, 等. GIL击穿放电低频声场仿真[J]. 高电压技术, 2020, 46(3): 906-914. Teng Yun, Yang Jinggang, Ma Yong, et al.Low frequency acoustic field simulation of GIL disruptive discharge[J]. High Voltage Engineering, 2020, 46(3): 906-914. [17] 李永亮, 唐俊, 党冬, 等. 苏通GIL综合管廊声传播特性仿真研究[J]. 声学技术, 2018, 37(4): 297-302. Li Yongliang, Tang Jun, Dang Dong, et al.Simulation study of acoustic propagation characteristics in Suzhou-Nantong GIL multi-utility tunnel[J]. Technical Acoustics, 2018, 37(4): 297-302. [18] Fei Ye, Liu Yunpeng, Chen Jiangbo, et al.The attenuation and propagation law of ultrasonic wave in UHV gas insulated line[J]. IEEE Access, 2020, 8: 163308-163315. [19] 杜志叶, 郝兆扬, 郝乾, 等. 220kV GIL复杂壳体结构振动传播特性分析[J]. 湖南大学学报(自然科学版), 2022, 49(2): 125-134. Du Zhiye, Hao Zhaoyang, Hao Qian, et al.Analysis on vibration propagation characteristics of 220kV GIL complicated shell structure[J]. Journal of Hunan University (Natural Sciences), 2022, 49(2): 125-134. [20] 伍企舜. GIS声学诊断的理论与实验基础[J]. 高压电器, 1991, 27(2): 55-61. [21] (美)伊文. 层状介质中的弹性波[M]. 刘光鼎, 译.北京: 科学出版社, 1966. [22] 薛建议, 朱明晓, 邵先军, 等. 特高压GIS局部放电超声波传播特性仿真[J]. 高压电器, 2018, 54(9): 67-75. Xue Jianyi, Zhu Mingxiao, Shao Xianjun, et al.Simulation on ultrasonic propagation characteristics of partial discharge in ultra-high voltage GIS[J]. High Voltage Apparatus, 2018, 54(9): 67-75. [23] 邵长金, 杨振清, 周广刚. 场与波[M]. 东营: 中国石油大学出版社, 2015. [24] 程祖依. 弹性动力学基础[M]. 武汉: 中国地质大学出版社, 1989. [25] 侯云霞. Lamb波和管中导波的传播特性研究[D]. 大连: 大连理工大学, 2009. Hou Yunxia.Study on propagation characteristics of Lamb wave and guided wave in pipes[D]. Dalian: Dalian University of Technology, 2009. [26] 张清华, 张登科, 崔闯, 等. 基于超声导波的钢桥面板纵肋对接焊缝疲劳裂纹检测方法[J]. 中国公路学报, 2022, 35(6): 101-112. Zhang Qinghua, Zhang Dengke, Cui Chuang, et al.Fatigue crack detection method based on ultrasonic-guided waves for the longitudinal rib butt weld of steel decks[J]. China Journal of Highway and Transport, 2022, 35(6): 101-112. [27] 栗霞飞, 刘飞, 赵满全, 等. 基于超声导波检测管道缺陷的数值模拟[J]. 声学技术, 2019, 38(2): 164-169. Li Xiafei, Liu Fei, Zhao Manquan, et al.Numerical simulation of pipeline defects detection based on ultrasonic guided wave[J]. Technical Acoustics, 2019, 38(2): 164-169. [28] 姚睿丰, 王妍, 高景晖, 等. 压电材料与器件在电气工程领域的应用[J]. 电工技术学报, 2021, 36(7): 1324-1337. Yao Ruifeng, Wang Yan, Gao Jinghui, et al.Applications of piezoelectric materials and devices in electric engineering[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1324-1337. [29] 魏东, 刘侃, 丁荣军, 等. 基于多重同步压缩变换的永磁同步电机初期匝间短路故障检测[J]. 电工技术学报, 2022, 37(18): 4651-4663. Wei Dong, Liu Kan, Ding Rongjun, et al.A multi-synchrosqueezing transformation based early stage detection of inter-turn short circuit fault in permanent magnet synchronous machine[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4651-4663. [30] 徐鹏, 苏勇令, 贺林, 等. 振动测试技术在GIS耐压试验故障定位中的应用研究[J]. 华东电力, 2014, 42(1): 23-27. Xu Peng, Su Yongling, He Lin, et al.Vibration test system using in breakdown location of GIS withstand voltage test[J]. East China Electric Power, 2014, 42(1): 23-27. [31] 马文长, 马博辉, 何宁辉, 等. 基于声源信号的GIL击穿性放电定位研究[J]. 宁夏电力, 2021(2): 28-34. Ma Wenchang, Ma Bohui, He Ninghui, et al.Research on location of GIL breakdown discharge based on acoustic signal[J]. Ningxia Electric Power, 2021(2): 28-34.