Voltage Sag Source Location Based on the Correlation of Multipoint Positive Sequence Voltage and the Typical Pattern Matching Optimization
Lin Yongyi1, Shao Zhenguo1, Zhang Yan1, Zhang Yi2, Wu Danyue2
1. College of Electrical Engineering and Automation Fuzhou University Fuzhou 350116 China 2.State Grid Fujian Electric Power Research Institute Fuzhou 350007 China
Abstract:A novel method of voltage sag source location based on the correlation of multipoint positive sequence voltage and the typical pattern matching optimization is proposed to make the location results independent of fault type and transition resistance. Firstly, it builds the fault pattern using the positive sequence voltage variation at measuring points and defines the pattern similarity based on the Euclidean distance measure and the Spearman rank correlation coefficient. Then it forms the set of typical patterns by setting up a preset fault at the middle of each branch and clusters it into several subgroups according to the similarity of the measuring sequence and typical patterns. It chooses the corresponding lines of the subgroup with the highest similarity to make up the primary fault line set, which can effectively narrow the searching space. Finally, an optimal estimation model is built to find the optimal matching fault pattern. The object function is to maximize the similarity, the primary fault line and fault distance are chosen as optimization variables. The model is solved by particle swarm optimization algorithm, fault line and fault position can be obtained. The numerical examples of IEEE 30 and IEEE 33 system show the feasibility and validity of the proposed method. The results show that the method can effectively eliminate the influence of fault type and transition resistance and has higher location accuracy than previous methods.
林涌艺,邵振国,张嫣,张逸,吴丹岳. 基于多测点正序电压相关性与典型模式匹配寻优的电压暂降源定位[J]. 电工技术学报, 2017, 32(17): 35-46.
Lin Yongyi, Shao Zhenguo, Zhang Yan, Zhang Yi, Wu Danyue. Voltage Sag Source Location Based on the Correlation of Multipoint Positive Sequence Voltage and the Typical Pattern Matching Optimization. Transactions of China Electrotechnical Society, 2017, 32(17): 35-46.
[1] 陈众励, 许维胜.电压中断与电压暂降的成因其及防治[J]. 电工技术学报, 2015, 30(增刊1): 518-520. Chen Zhongli, Xu Weisheng. Reason and prevention of voltage interruption and voltage sags[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 518-520. [2] 孔祥雨, 徐永海, 陶顺. 基于一种电压暂降新型描述的敏感设备免疫能力评估[J]. 电工技术学报, 2015, 30(3): 165-171. Kong Xiangyu, Xu Yonghai, Tao Shun. Sensitive equipment immunity assessment based on a new voltage sag description[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 165-171. [3] 程志友, 王雪菲, 徐佳. 一种基于复阻抗的电压暂降定位方法[J]. 电力系统保护与控制, 2016, 44(4): 149-154. Cheng Zhiyou, Wang Xuefei, Xu Jia. A voltage sag detection method based on complex impedance[J]. Power System Protection and Control, 2016, 44(4): 149-154. [4] 周超, 田立军. 基于粒子群优化算法的电压暂降监测点优化配置[J]. 电工技术学报, 2014, 29(4): 181-187. Zhou Chao, Tian Lijun. A method of voltage sag monitoring nodes based on particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 181-187. [5] 赵莹, 赵川, 叶华, 等. 应用主成分分析约简电压暂降扰动源识别特征的方法[J]. 电力系统保护与控制, 2015, 43(13): 105-110. Zhao Ying, Zhao Chuan, Ye Hua, et al. Method to reduce identification feature of different voltage sag disturbance source based on principal component analysis[J]. Power System Protection and Control, 2015, 43(13): 105-110. [6] 肖助力, 龚仁喜, 陈双. 一种改进不完全S变换的电压暂降检测方法[J]. 电力系统保护与控制, 2015, 43(9): 62-68. Xiao Zhuli, Gong Renxi, Chen Shuang. Detection of voltage sag by a modified incomplete S-transform[J]. Power System Protection and Control, 2015, 43(9): 62-68. [7] Parsons A C, Grady W M, Powers E J, et al. A direction finder for power quality disturbances based upon disturbance power and energy[J]. IEEE Transactions on Power Delivery, 2000, 15(3):1081-1086. [8] 张文涛, 王成山. 基于改进扰动功率和能量法的暂态扰动定位[J]. 电力系统自动化, 2007, 31(8): 32-35. Zhang Wentao, Wang Chengshan. Transient disturbances location based on improved disturbance power and energy[J]. Automation of Electric Power Systems, 2007, 31(8): 32-35. [9] Li C, Tayjasanant T, Xu W, et al. Method for voltage sag source detection by investigating slope of the system trajectory[J]. IEEE Proceedings: Generation, Transmission and Distribution, 2003, 150(3):367-372. [10]Hamzah N, Mohamed A, Hussain A. A new approach to locate the voltage sag source using real current component[J]. Electric Power Systems Research, 2004, 72(2):113-123. [11]唐轶, 陈嘉, 樊新梅, 等. 基于扰动有功电流方向的电压暂降源定位方法[J]. 电工技术学报, 2015, 30(23): 102-109. Tang Yi,Chen Jia, Fan Xinmei, et al. A method for detecting voltage sag sources based on disturbance active current direction[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 102-109. [12]Tayjasanant T, Li C, Xu W. A resistance sign-based method for voltage sag source detection[J]. IEEE Transactions on Power Delivery, 2005, 20(4):2544-2551. [13]Pradhan A K, Routray A. Applying distance relay for voltage sag source detection[J]. IEEE Transactions on Power Delivery, 2005, 20(1):529-531. [14]Polajzer B, Stumberger G, Dolinar D. Instantaneous positive-sequence current applied for detecting voltage sag sources[J]. IET Generation, Transmission and Distribution, 2015, 9(4):319-327. [15]吕干云, 孙维蒙, 汪晓东, 等. 电力系统电压暂降源定位方法综述[J]. 电力系统保护与控制, 2010, 38(23): 241-245. Lü Ganyun, Sun Weimeng, Wang Xiaodong, et al. Review on methods for voltage sag source location in power system[J]. Power System Protection and Control, 2010, 38(23): 241-245. [16]董新洲, 葛耀中, 徐丙垠. 利用暂态电流行波的输电线路故障测距研究[J]. 中国电机工程学报, 1999,19(4): 76-80. Dong Xinzhou, Ge Yaozhong, Xu Bingyin. Research of fault location based on current travelling waves[J]. Proceedings of the CSEE, 1999,19(4): 76-80. [17]徐丙垠, 李京, 陈平, 等. 现代行波测距技术及其应用[J]. 电力系统自动化, 2001, 25(23): 62-65. Xu Bingyin, Li Jing, Chen Ping, et al. Modern fault location techniques based on fault generated travelling waves and their applications[J]. Automation of Electric Power Systems, 2001, 25(23): 62-65. [18]索南加乐, 齐军, 陈福锋, 等. 基于R-L模型参数辨识的输电线路准确故障测距算法[J]. 中国电机工程学报, 2004, 24(12): 119-125. Suonan Jiale, Qi Jun, Chen Fufeng, et al. An accurate fault location algorithm for transmission lines based on R-L model parameter identification[J]. Proceedings of the CSEE, 2004, 24(12): 119-125. [19]Dalcastagne A L, Zimath S L. A study about the sources of error of impedance-based fault location methods[C]//IEEE Transmission and Distribution Conference and Exposition, Latin America, Bogota,2008: 1-6. [20]束洪春, 邬乾晋, 张广斌, 等. 基于神经网络的单端行波故障测距方法[J]. 中国电机工程学报, 2011,31(4): 85-92. Shu Hongchun, Wu Qianjin, Zhang Guangbin, et al. Single terminal traveling wave fault location method based on ANN[J]. Proceedings of the CSEE, 2011,31(4): 85-92. [21]刘凤霞, 刘前进. 基于模糊神经网络的故障测距[J]. 电力自动化设备, 2006,26(5): 32-34. Liu Fengxia, Liu Qianjin. Fault locating based on fuzzy neural network[J]. Automation of Electric Power Systems, 2006,26(5): 32-34. [22]刘颖英, 王同勋, 冯丹丹, 等. 基于多重判据的电压暂降故障源定位方法[J]. 中国电机工程学报, 2015, 35(1): 103-111. Liu Yingying, Wang Tongxun, Feng Dandan, et al. Multiple criterions based voltage sag location method[J]. Proceedings of the CSEE, 2015, 35(1): 103-111. [23]李勋, 龚庆武, 肖辉, 等. 基于相关分析匹配度的配电网故障定位[J]. 电力系统自动化, 2012, 36(1): 90-95. Li Xun, Gong Qingwu, Xiao Hui, et al. Fault location for distribution network based on correlation analysis matching degree[J]. Automation of Electric Power Systems, 2012, 36(1): 90-95. [24]谭丹, 杨洪耕, 曲广龙. 基于故障距离分布函数的配电网故障定位[J]. 电网技术, 2012, 36(10): 119-124. Tan Dan, Yang Honggeng, Qu Guanglong. Fault location for distribution network based on fault distance distribution function[J]. Power System Technology, 2012, 36(10): 119-124. [25]Mokhlis H, Khalid A R, Li H Y. Voltage sags pattern recognition technique for fault section identification in distribution networks[C]//IEEE Bucharest Power Tech, Bucharest, Romania, 2009: 1-6. [26]Mokhlis H, Li H. Non-linear representation of voltage sag profiles for fault location in distribution networks[J]. International Journal of Electrical Power and Energy Systems, 2011, 33(1): 124-130. [27]Liao Y. Fault location for single-circuit line based on bus-impedance matrix utilizing voltage measurements[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 609-617. [28]周超, 田立军, 侯燕文, 等. 基于监测点优化配置的电压暂降故障点定位估计[J]. 电力系统自动化, 2012, 36(16): 102-107. Zhou Chao, Tian Lijun, Hou Yanwen, et al. Fault location estimation based on optimal voltage sag monitoring program[J]. Automation of Electric Power Systems, 2012, 36(16): 102-107. [29]Woolley N C, Avendao-Mora M, Woolley A P, et al. Probabilistic estimation of voltage sags using erroneous measurement information[J]. Electric Power Systems Research, 2014, 106(1):142-150. [30]林芳, 肖先勇, 李国栋, 等. 考虑电压测量误差的故障概率定位方法[J]. 电网技术, 2015, 39(12): 3592-3597. Lin Fang, Xiao Xianyong, Li Guodong, et al. Probabilistic fault localization method considering voltage measurement errors[J]. Power System Technology, 2015, 39(12): 3592-3597. [31]邱玉涛, 肖先勇, 赵恒, 等. 满足电压暂降与故障位置均可观的监测装置二阶段配置[J]. 电网技术, 2014(11): 3166-3172. Qiu Yutao, Xiao Xianyong, Zhao Heng, et al. A placement approach of two-Stage monitors making both voltage sag and fault position observable[J]. Power System Technology, 2014(11): 3166-3172. [32]赵晨雪, 陶顺, 肖湘宁. 基于电能质量检测系统电压暂降信息的故障定位估计方法[J]. 电网技术, 2016, 40(2): 642-648. Zhao Chenxue, Tao Shun, Xiao Xiangning.Fault location estimation based on voltage sag information of PQMS[J]. Power System Technology, 2016, 40(2): 642-648. [33]Park C H, Jang G. Stochastic estimation of voltage sags in a large meshed network[J]. IEEE Transactions on Power Delivery, 2007, 22(3):1655-1664. [34]Rodriguez A, Laio A. Machine learning. clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496. [35]霍乾涛. 电力系统中的电压瞬间跌落研究[D]. 杭州: 浙江大学, 2004. [36]冉玘泉. 智能配电网自愈控制技术研究[D]. 成都:西南交通大学, 2015.