Coil Temperature Rise and Structure Optimization in Electromagnetic Forming
Wang Ziye1,2, Yang Meng3, Xiong Qi3
1. Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 China; 2. School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 3. College of Electrical Engineering and New Energy China Three Gorges University Yichang 443002 China
Abstract:In the electromagnetic forming process, high temperature rise of the coil will shorten its service life. Optimizing the coil structure can reduce the temperature rise without affecting the forming effect. In this paper, the solenoid coil used in the tube electromagnetic forming is taken as the research object. Based on the electromagnetic field-mechanical structure field-temperature field coupling finite element model, according to the characteristics of coil winding process, the influence of six structural parameters of coil layer number, turn number, height, width, turn spacing and layer spacing on the coil temperature rise and forming effect is discussed in detail. The simulation results show that suitable structural parameters can reduce the temperature rise of the coil while maintaining the forming effect of the workpiece, but the influence of the six structural parameters is not the same. This paper provides suggestions for the structural optimization design of the tube electromagnetic forming coil, and clarifies the direction for improving the service life of the coils.
王紫叶, 杨猛, 熊奇. 电磁成形过程中线圈温升及结构优化[J]. 电工技术学报, 2021, 36(18): 3891-3901.
Wang Ziye, Yang Meng, Xiong Qi. Coil Temperature Rise and Structure Optimization in Electromagnetic Forming. Transactions of China Electrotechnical Society, 2021, 36(18): 3891-3901.
[1] 邱立, 李彦涛, 苏攀, 等. 电磁成形中电磁技术问题研究进展[J]. 电工技术学报, 2019, 34(11): 2247-2259. Qiu Li, Li Yantao, Su Pan, et al.Research on electromagnetic problems in electromagnetic forming process[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2247-2259. [2] Xiong Qi, Huang Hao, Xia Liangyu, et al.A research based on advance dual-coil electromagnetic forming method on flanging of small-size tubes[J]. The Inter-national Journal of Advanced Manufacturing Tech-nology, 2019, 102(9-12): 4087-4094. [3] 周纹霆, 董守龙, 王晓雨, 等. 电磁脉冲焊接电缆接头的装置的研制及测试[J]. 电工技术学报, 2019, 34(11): 2424-2434. Zhou Wenting, Dong Shoulong, Wang Xiaoyu, et al.Development and test of electromagnetic pulse welding cable joint device[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2424-2434. [4] Xiong Qi, Yang Meng, Liu Xin, et al.A dual-coil method for electromagnetic attraction forming of sheet metals[J]. IEEE Access, 2020, 8: 92708-92717. [5] Gies S, Lobbe C, Weddeling C, et al.Thermal loads of working coils in electromagnetic sheet metal forming[J]. Journal of Materials Processing Tech-nology, 2014, 214(11): 2553-2565. [6] Mamutov A V, Golovashchenko S F, Mamutov V S, et al.Experimental-analytical method of analyzing performance of coils for electromagnetic forming and joining operations[J]. Journal of Materials Processing Technology, 2018, 255: 86-95. [7] Xiong Qi, Huang Hao, Deng Changzheng, et al.A method to improve forming accuracy in electro-magnetic forming of sheet metal[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 57(3): 367-375. [8] 邱立, 杨新森, 常鹏, 等. 双线圈轴向压缩式管件电磁胀形电磁力分布规律与管件成形性能研究[J]. 电工技术学报, 2019, 34(14): 2855-2862. Qiu Li, Yang Xinsen, Chang Peng, et al.Electro-magnetic force distribution and forming performance in electromagnetic tube expansion process with two coils[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2855-2862. [9] 邱立, 余一杰, 聂小鹏, 等. 管件电磁胀形过程中的材料变形性能问题与电磁力加载方案[J]. 电工技术学报, 2019, 34(2): 212-218. Qiu Li, Yu Yijie, Nie Xiaopeng, et al.Study on material deformation performance and electro-magnetic force loading in electromagnetic tube expansion process[J]. Transactions of China Electro-technical Society, 2019, 34(2): 212-218. [10] Xiong Qi, Tang Hongtao, Wang Muxue, et al.Design and implementation of tube bulging by an attractive electromagnetic force[J]. Journal of Materials Pro-cessing Technology, 2019, 273: 116240. [11] Paese E, Geier M, Homrich R P, et al.Sheet metal electromagnetic forming using a flat spiral coil: experiments, modeling, and validation[J]. Journal of Materials Processing Technology, 2019, 263: 408-422. [12] 汪志强, 黄亮, 李建军, 等. 大型铝合金曲面零件电磁渐进成形线圈结构优化设计[J]. 塑性工程学报, 2015, 22(6): 71-77. Wang Zhiqiang, Huang Liang, Li Jianjun, et al.Structural optimization design of coil on electro-magnetic incremental forming of large aluminum alloy curved surface parts[J]. Journal of Plasticity Engineering, 2015, 22(6): 71-77. [13] Lai Zhipeng, Cao Quanliang, Han Xiaotao, et al.Analytical optimization on geometry of uniform pressure coil in electromagnetic forming and welding[J]. Springer London, 2019, 104(5-8): 3129-3137. [14] 邱磊. 平板成形线圈连续放电过程热负荷分析[D]. 武汉: 华中科技大学, 2017. [15] 刘良云. 平板电磁成形线圈温度特性及优化研究[D]. 武汉: 华中科技大学, 2017. [16] Cao Quanliang, Han Xiaotao, Lai Zhipeng, et al.Analysis and reduction of coil temperature rise in electromagnetic forming[J]. Journal of Materials Processing Technology, 2015, 225: 185-194. [17] Qiu Li, Wang Chenglin, Abu-Siada A, et al.Coil temperature rise and workpiece forming efficiency of electromagnetic forming based on half-wave current method[J]. IEEE Access, 2020, 8: 9371-9379. [18] Qiu Li, Deng Kui, Li Yantao, et al.Analysis of coil temperature rise in electromagnetic forming with coupled cooling method[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 63(1): 45-58. [19] Mamalis A G, Manolakos D E, Kladas A G, et al.Electromagnetic forming and powder processing: trends and developments[J]. Applied Mechanics Reviews, 2004, 57(4): 299-324.