Wind Speed Prediction of Wind Turbine Based on the Internet of Machines and Spatial Correlation Weight
Shen Xiaojun1, Zhou Chongcheng1,2, Fu Xuejiao1
1. College of Electronic and Information Engineering Tongji University Shanghai 200092 China; 2. Jiading Power Supply Company State Grid Shanghai Electric Power Company Shanghai 201800 China
Abstract:Real-time wind speed prediction can effectively improve the control performance and power generation of wind turbine, and realize the efficient use of wind energy. On the basis of analyzing the temporal-spatial propagation characteristics of wind speed in wind farms, a real-time prediction framework based on Internet of machines and the weight of spatial correlation is proposed in this paper. The prediction model and process is established, a Kalman filter algorithm is developed and comparison study is carried out with the persistent model and traditional spatial correlation prediction method. Case study result shows that on small time scale, the proposed method has better prediction accuracy than the persistent model, and the fault tolerance and robustness are superior to the traditional spatial correlation method. The feasibility and effectiveness of the proposed method is verified, and the prediction framework is capable of multi-time scale prediction such as minute level and ultra-short term wind speed forecasting. The research results can provide new insights for accurate real-time wind speed perception of wind turbines.
沈小军, 周冲成, 付雪娇. 基于机联网-空间相关性权重的风电机组风速预测研究[J]. 电工技术学报, 2021, 36(9): 1782-1790.
Shen Xiaojun, Zhou Chongcheng, Fu Xuejiao. Wind Speed Prediction of Wind Turbine Based on the Internet of Machines and Spatial Correlation Weight. Transactions of China Electrotechnical Society, 2021, 36(9): 1782-1790.
[1] Bottasso C L, Pizzinelli P, Riboldi C E D, et al. LiDAR-enabled model predictive control of wind turbines with real-time capabilities[J]. Renewable Energy, 2014, 71(71): 442-452. [2] Wang Na, Johnson K E, Wright A D.FX-RLS-based feed forward control for LIDAR-enabled wind turbine load mitigation[J]. IEEE Transactions on Control Systems Technology, 2012, 20(5): 1212-1222. [3] Wang Na, Johnson K E, Wright A D.Comparison of strategies for enhancing energy capture and reducing loads using LIDAR and feed forward control[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1129-1142. [4] Mohammad A C, Sami F M, Trzynadlowski A M.Wind speed and wind direction forecasting using echo state network with nonlinear functions[J]. Renweable Energy, 2019,131: 879-889. [5] Guo Yifei, Gao Houlei, Wu Qiuwei.A combined reliability model of VSC-HVDC connected offshore wind farms considering wind speed correlation[J]. IEEE Transactions on Sustainable Energy, 2017, 8(4): 1637-1646. [6] 孙国强, 卫志农, 翟玮星. 基于RVM 与ARMA 误差校正的短期风速预测[J]. 电工技术学报, 2012, 27(8): 187-193. Sun Guoqiang, Wei Zhinong, Zhai Weixing.Short term wind speed forecasting based on RVM and ARMA error correcting[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 187-193. [7] Erdem E, Shi J.ARMA based approaches for forecasting the tuple of wind speed and direction[J]. Applied Energy, 2011, 88(4): 1405-1414. [8] Ak R, Fink O, Zio E.Two machine learning approaches for short-term wind speed time-series prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(8): 1734-1747. [9] 刘兴杰, 岑添云, 郑文书, 等. 基于模糊粗糙集与改进聚类的神经网络风速预测[J]. 中国电机工程学报, 2014, 34(19): 3162-3169. Liu Xingjie, Cen Tianyun, Zheng Wenshu, et al.Neural network wind speed prediction based on fuzzy rough set and improved clustering[J]. Proceedings of the CSEE, 2014, 34(19): 3162-3169. [10] Ak R, Vitelli V, Zio E.An interval-valued neural network approach for uncertainty quantification in short-term wind speed prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(11): 2787-2800. [11] Chen Niya, Qian Zheng, Nabney I T, et al.Wind power forecasts using Gaussian processes and numerical weather prediction[J]. IEEE Transactions on Power Systems, 2014, 29(2): 656-665. [12] 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 1-12. Peng Xiaosheng, Xiong Lei, Wen Jinyu, et al.A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36(23): 6315-6326. [13] 陈宁, 薛禹胜, 丁杰, 等. 利用空间相关性的超短期风速预测[J]. 电力系统自动化, 2017, 41(12): 124-130. Chen Ning, Xue Yusheng, Ding Jie, et al.Ultra-short term wind prediction using spatial correlation[J]. Automation of Electric Power Systems, 2017, 41(12): 124-130. [14] Damousis I G, Alexiadis M C, Theocharis J B, et al.A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 352-361. [15] 薛禹胜, 陈宁, 王树民, 等. 关于利用空间相关性预测风速的评述[J]. 电力系统自动化, 2017, 41(10): 161-169. Xue Yusheng, Chen Ning, Wang Shumin, et al.Review on wind speed prediction based on spatial correlation[J]. Automation of Electric Power Systems, 2017, 41(10): 161-169. [16] Li Pai, Guan Xiaohong, Wu Jiang, et al.Modeling dynamic spatial correlations of geographically distributed wind farms and constructing ellipsoidal uncertainty sets for optimization-based generation scheduling[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4): 1594-1605. [17] 韩兵, 周腊吾, 陈浩, 等. 大型风电机组激光雷达辅助模型预测控制方法[J]. 中国电机工程学报, 2016, 36(18): 5062-5069. Han Bing, Zhou Lawu, Chen Hao, et al.Approach to model predictive control of large wind turbine using light detection and ranging measurements[J]. Proceedings of the CSEE,2016, 36(18): 5062-5069. [18] Shen Xiaojun, Zhou Chongcheng, Li Guojie, et al.Overview of wind parameters sensing methods and framework of a novel MCSPV recombination sensing method for wind turbines[J]. Energies, 2018, 11(7): 1747. [19] Qin Zhilong, Li Wenyuan, Xiong Xiaofu.Generation system reliability evaluation incorporating correlations of wind speeds with different distributions[J]. IEEE Transactions on Power Systems, 2013, 28(1): 551-558. [20] 孙国强, 李逸驰, 向育鹏, 等. 计及风速时空相关性的含风电场电力系统动态随机最优潮流计算[J]. 中国电机工程学报, 2015, 35(17): 4308-4317. Sun Guoqiang, Li Yichi, Xiang Yupeng, et al.Dynamic stochastic optimal power flow of wind integrated power system considering temporal and spatial correlation of wind speed[J]. Proceedings of the CSEE, 2015, 35(17): 4308-4317. [21] 杨正瓴, 冯勇, 熊定方, 等. 基于季风特性改进风电功率预测的研究展望[J]. 智能电网, 2015, 3(1): 1-7. Yang Zhengling, Feng Yong, Xiong Dingfang, et al.Research prospects of improvement in wind power forecasting based on characteristics of monsoons[J]. Smart Grid, 2015, 3(1): 1-7. [22] 修春波, 任晓, 李艳晴, 等. 基于卡尔曼滤波的风速序列短期预测方法[J]. 电工技术学报, 2014, 29(2): 253-259. Xiu Chunbo, Ren Xiao, Li Yanqing, et al.Short-term prediction method of wind speed series based on Kalman filtering fusion[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 255-259. [23] 沈小军, 周冲成, 吕洪. 基于运行数据的风电机组间风速相关性统计分析[J]. 电工技术学报, 2017, 32(16): 265-274. Shen Xiaojun, Zhou Chongcheng, Lü Hong.Statistical analysis of wind speed correlation between wind turbines based on operational data[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 265-274. [24] 杨正瓴, 刘阳, 张泽, 等. 采用最近历史观测值和PLSR进行空间相关性超短期风速预测[J]. 电网技术, 2017, 41(6): 1815-1822. Yang Zhengling, Liu Yang, Zhang Ze, et al.Ultra-short-term wind speed prediction with spatial correlation using recent historical observations and PLSR[J]. Power System Technology, 2017, 41(6): 1815-1822.