Optimal Control Strategy for Energy Storage Considering Wind Farm Scheduling Plan and Modulation Frequency Limitation under Electricity Market Environment
Li Junhui, Hou Tao, Mu Gang, Yan Gangui, Li Cuiping
Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China
Abstract:The intermittency of wind power not only makes it difficult for the wind farm to respond to the day-ahead scheduling plan(DASP) accurately, but also aggravates the frequency fluctuation of power system. In order to improve the schedulability of wind power and the security of power system frequency, this paper taking day-ahead scheduling as an example constructed the formation method of the DASP and the modulation frequency limitation of the power system. Based on this, a control strategy of energy storage was proposed which combined energy storage assisting wind farm tracking the DASP with participating in frequency modulation. Then, a wind-energy storage(WES) operation model was established under the electricity market environment to maximize the profit of the WES station. The combined output power constraint of WES station and the frequency security constraint which formed by the proposed strategy were considered in the model. This model can calculate the optimal output power of the energy storage which are used to tracking DASP and participating in frequency modulation. Simulation verification was carried out based on actual measurement data. Test results show that the proposed strategy can improve the ability of wind farm tracking DASP and the security of frequency. At the same time, it also has good economic benefits.
李军徽, 侯涛, 穆钢, 严干贵, 李翠萍. 电力市场环境下考虑风电调度和调频极限的储能优化控制[J]. 电工技术学报, 2021, 36(9): 1791-1804.
Li Junhui, Hou Tao, Mu Gang, Yan Gangui, Li Cuiping. Optimal Control Strategy for Energy Storage Considering Wind Farm Scheduling Plan and Modulation Frequency Limitation under Electricity Market Environment. Transactions of China Electrotechnical Society, 2021, 36(9): 1791-1804.
[1] 国家能源局. 2019 年风电并网运行情况[EB/OL]. [2020-02-28].http://www.nea.gov.cn/2020-02/28/c_ 138827910.htm. National Energy Administration. Grid connected operation of wind power in 2019[EB/OL]. [2020-02-28]. http://www.nea.gov.cn/2020-02/28/c_138827910.htm [2] 内蒙古自治区能源局. 2019年全区各盟市电力增速排行[EB/OL]. [2020-02-26]. http://nyj.nmg.gov.cn/index.php?v=show&cid=59&id=763. Nei Monggol Autonomous Region Energy Administration. Power growth rate of all cities in the region in 2019[EB/OL]. [2020-02-26]. http://nyj.nmg. gov.cn/index .php?v=show&cid=59&id=763 [3] Zhang G, Ela E, Wang Q.Market scheduling and pricing for primary and secondary frequency reserve[J]. IEEE Transactions on Power Systems, 2018, 34(4): 2914-2924. [4] 严干贵, 赵伟哲, 张礼珏. 变速变桨距风电机组减载调频综合控制策略研究[J]. 东北电力大学学报, 2018, 38(5): 1-8. Yan Gangui, Zhao Weizhe, Zhang Lijue.Research on integrated control of deloading frequency regulation for variable speed and variable pitch angle wind turbines[J]. Journal of Northeast Electric Power University, 2018, 38(5):1-8. [5] 方勇杰. 英国“8•9”停电事故对频率稳定控制技术的启示[J]. 电力系统自动化, 2019, 43(24): 1-5. Fang Yongjie.Reflections on frequency stability control technology based on the blackout event of 9 August 2019 in UK[J]. Automation of Electric Power Systems, 2019, 43(24): 1-5. [6] 李军徽, 冯喜超, 严干贵, 等. 高风电渗透率下的电力系统调频研究综述[J]. 电力系统保护与控制, 2018, 46(2): 163-170. Li Junhui, Feng Xichao, Yan Gangui, et al.Survey on frequency regulation technology in high wind penetration power system[J]. Power System Protection and Control, 2018, 46(2): 163-170. [7] John E T B, David T Y. Emissions impacts of future battery storage deployment on regional power systems[J]. Applied Energy, 2020, 264: 114678. [8] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961-3970. Li Junhui, Zhang Jiahui, Mu Gang, et al.Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power System Technology, 2019, 43(11): 3961-3970. [9] 陈薇, 侯杨成, 张里, 等. 计及损耗的钒电池储能系统功率优化分配策略[J]. 电工技术学报, 2020, 35(19): 4038-4047. Chen Wei, Hou Yangcheng, Zhang Li, et al.Power optimization allocation strategy for vanadium battery energy storage system considering loss[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4038-4047. [10] 郭伟, 赵洪山. 基于改进分布式一致性算法的电池储能阵列分组控制策略[J]. 电工技术学报, 2019, 34(23): 4991-5000. Guo Wei, Zhao Hongshan.Grouping control strategy of battery energy storage array system based on an improved distributed consensus algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4991-5000. [11] 李建林, 牛萌, 王上行, 等. 江苏电网侧百兆瓦级电池储能电站运行与控制分析[J]. 电力系统自动化, 2020, 44(2): 28-35. Li Jianlin, Niu Meng, Wang Shangxing, et al.Operation and control analysis of 100 MW class battery energy storage station on grid side in Jiangsu power grid of China[J]. Automation of Electric Power Systems, 2020, 44(2): 28-35. [12] 中国风电新闻网. 湖北省能源局关于开展2020年平价风电和平价光伏发电项目竞争配置工作的通知[EB/OL].[2020-06-09].http://www.chinawindnews. com/13774.html. [13] 国家标准GB 38755—2019《电力系统安全稳定导则》[S]. 2020. [14] 张峰, 张鹏, 梁军. 考虑风电功率不确定性的风电场出力计划上报策略[J]. 电力自动化设备, 2019, 39(11): 34-40. Zhang Feng, Zhang Peng, Liang Jun.Wind farm generation schedule strategy considering wind power uncertainty[J]. Electric Power Automation Equipment, 2019, 39(11): 34-40. [15] 李滨, 粟祎敏, 莫新梅, 等. 跟踪风电计划偏差的风储系统联合控制策略[J]. 电网技术, 2019, 43(6): 2102-2108. Li Bin, Su Yimin, Mo Xinmei, et al.Control strategy of hybrid wind-ES power system for tracking wind power planning deviation[J]. Power System Technology, 2019, 43(6): 2102-2108. [16] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. LI Xinran, Cui Xiwen, Huang Jiyuan, et al.The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908. [17] 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J].电力系统自动化, 2020, 44(19): 63-72. Li Junhui, Hou Tao, Mu Gang, et al.Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19):63-72. [18] 李若, 李欣然, 谭庄熙, 等. 考虑储能电池参与二次调频的综合控制策略[J]. 电力系统自动化, 2018, 42(8): 74-82. Li Ruo, Li Xinran, Tan Zhuangxi, et al.Integrated control strategy considering energy storage battery participating in secondary frequency regulation[J]. Automation of Electric Power Systems, 2018, 42(8): 74-82. [19] 闫鹤鸣, 李相俊, 麻秀范, 等. 基于超短期风电预测功率的储能系统跟踪风电计划出力控制方法[J]. 电网技术, 2015, 39(2): 432-439. Yan Heming, Li Xiangjun, Ma Xiufan, et al.Wind power output schedule tracking control method of energy storage system based on ultra-short term wind power prediction[J]. Power System Technology, 2015, 39(2): 432-439. [20] 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115. MA Zhihui, Li Xinran, Tan Zhuangxi, et al.Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115. [21] Tan Zhuangxi, Li Xinran, He Li, et al.Primary frequency control with BESS considering adaptive SoC recovery[J]. International Journal of Electrical Power & Energy Systems, 2019, DOI: 10.1016/j.ijepes. 2019.105588. [22] 虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略[J]. 电力系统自动化, 2019, 43(12): 36-43. Yu Linbo, Kou Peng, Feng Yutao, et al.Model predictive control strategy for combined wind-storage system to participate in frequency response[J]. Automation of Electric Power Systems, 2019, 43(12): 36-43. [23] 陈达鹏, 荆朝霞. 美国调频辅助服务市场的调频补偿机制分析[J]. 电力系统自动化, 2017, 41(18): 1-9. Chen Dapeng, Jing Zhaoxia.Analysis of frequency modulation compensation mechanism in frequency modulation ancillary service market of the united states[J]. Automation of Electric Power Systems, 2017, 41(18): 1-9. [24] 姜欣, 郑雪媛, 胡国宝, 等. 市场机制下面向电网的储能系统优化配置[J]. 电工技术学报, 2019, 34(21): 4601-4610. Jiang Xin, Zheng Xueyuan, Hu Guobao, et al.Optimization of battery energy storage system locating and sizing for the grid under the market mechanism[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4601-4610. [25] 陈浩, 贾燕冰, 郑晋, 等. 规模化储能调频辅助服务市场机制及调度策略研究[J]. 电网技术, 2019, 43(10): 3606-3617. Chen Hao, Jia Yanbing, Zheng Jin, et al.Research on market mechanism and scheduling strategy of frequency regulation auxiliary service of large-scale energy storage[J]. Power System Technology, 2019, 43(10): 3606-3617. [26] 马恒瑞, 王波, 高文忠, 等. 区域综合能源系统中储能设备参与辅助服务的运行优化[J]. 电力系统自动化, 2019, 43(8): 34-40. Ma Hengrui, Wang Bo, Gao Wenzhong, et al.Operation optimization of energy storage equipment participating in auxiliary service in regional integrated energy system[J]. Automation of Electric Power Systems, 2019, 43(8): 34-40. [27] 谢敏, 韦薇, 李建钊, 等. 储能电站参与能量-调频市场联合调度模式研究[J]. 电力建设, 2019, 40(2): 20-28. Xie Min, Wei Wei, Li Jianzhao, et al.Research on combined dispatching mode of energy storage in energy market and regulation market[J]. Electric Power Construction, 2019, 40(2): 20-28. [28] 胡泽春, 夏睿, 吴林林, 等. 考虑储能参与调频的风储联合运行优化策略[J]. 电网技术, 2016, 40(08): 2251-2257. Hu Zechun, Xia Rui, Wu Linlin, et al.Joint operation optimization of wind-storage union with energy storage participating frequency regulation[J]. Power System Technology, 2016, 40(8): 2251-2257. [29] 王杰, 方日升, 温步瀛. 风储联合系统参与能量市场和调频辅助服务市场协同优化[J]. 电器与能效管理技术, 2019(20): 51-57, 63. Wang Jie, Fang Risheng, Wen Buying.Collaborative optimization in energy and frequency regulation markets for wind farm with energy storage[J]. Electrical & Energy Management Technology, 2019(20): 51-57, 63. [30] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1856. Wen Yunfeng, Yang Weifeng, Wang Ronghua, et al.Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1856. [31] Jacobson M Z, Delucchi M A, Bazouin G, et al.A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State[J]. Renewable Energy, 2016, 86: 75-88. [32] 李欣然, 邓涛, 黄际元, 等. 储能电池参与电网快速调频的自适应控制策略[J]. 高电压技术, 2017, 43(7): 2362-2369. Li Xinran, Deng Tao, Huang Jiyuan, et al.Battery energy storage systems self-adaptation control strategy in fast frequency regulation[J]. High Voltage Engineering, 2017, 43(7): 2362-2369. [33] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electrote-chnical Society, 2020, 35(4): 874-884. [34] 孙丙香, 李旸熙, 龚敏明, 等. 参与AGC辅助服务的锂离子电池储能系统经济性研究[J]. 电工技术学报, 2020, 35(19): 4048-4061. Sun Bingxiang, Li Yangxi, Gong Minming, et al.Study on the economy of energy storage system with lithium-ion battery participating in AGC auxiliary service[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4048-4061. [35] Pandžić H.Bobanac V. An accurate charging model of battery energy storage[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1416-1426. [36] Vagropoulos S I, Bakirtzis A G.Optimal bidding strategy for electric vehicle aggregators in electricity markets[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4031-4041.