Study on Sub-Synchronous Oscillations of Power Systems Caused by Grid-Connected Wind Farms Based on the Improved Complex Torque Coefficients Method
Wang Yijun1, Du Wenjuan2, Chen Chen1, Wang Haifeng1,2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. College of Electrical Engineering Sichuan University Chengdu 610065 China
Abstract:To examine the torsional sub-synchronous oscillations of power system systems caused by the dynamic interactions between grid-connected wind farms and synchronous units, this paper establishes a multi-input and multi-output closed-loop interconnect system model, which divides the system into synchronous machine subsystem and wind farm subsystem. On the basis of pointing out the defects of the traditional complex torque coefficients method, an improved complex torque coefficients method based on eigenvalue sensitivity is proposed. The effects of the variation of steady-state flow and dynamic interactions introduced by integration of wind farms are considered. Finally, the effectiveness of the proposed method in a single-machine and a multi-machine power system with grid-connected wind farms is verified by simulation analysis. From the perspective of damping mechanism, the near strong modal resonance phenomenon between the synchronous machine shaft system and the DFIG wind farm is explained. The influence of the control parameters of the VSC, the load of the transmission system and the level of the dynamic interactions on the near strong modal resonance between the shaft system of synchronous generators and control system of the wind farms are analyzed.
王一珺, 杜文娟, 陈晨, 王海风. 基于改进复转矩系数法的风电场并网引发电力系统次同步振荡研究[J]. 电工技术学报, 2020, 35(15): 3258-3269.
Wang Yijun, Du Wenjuan, Chen Chen, Wang Haifeng. Study on Sub-Synchronous Oscillations of Power Systems Caused by Grid-Connected Wind Farms Based on the Improved Complex Torque Coefficients Method. Transactions of China Electrotechnical Society, 2020, 35(15): 3258-3269.
[1] 张振宇, 王文倬, 王智伟, 等. 跨区直流外送模式对新能源消纳的影响分析及应用[J]. 电力系统自动化, 2019, 43(11): 174-181. Zhang Zhenyu, Wang Wenzhuo, Wang Zhiwei, et al.Impact analysis and application of cross-region HVDC delivery mode in renewable energy accommodation[J]. Automation of Electric Power Systems, 2019, 43(11): 174-181. [2] 盛逸标, 林涛, 陈宝平, 等. 面向新能源外送系统次/超同步振荡的控制器参数协调优化[J]. 电工技术学报, 2019, 34(5): 983-993. Sheng Yibiao, Lin Tao, Chen Baoping, et al.Coordination and optimization of controller parameters for subsynchronous/super-synchronous oscillation in new energy delivery systems[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 983-993. [3] 张超, 王维庆, 王海云, 等. 风火打捆外送系统220kV电网次同步振荡监控策略研究[J]. 电力系统保护与控制, 2018, 46(11): 138-144. Zhang Chao, Wang Weiqing, Wang Haiyun, et al.Study on monitoring and control strategy of subsynchronous oscillation for 220kV power grid in wind-thermal-bundled transmission system[J]. Power System Protection and Control, 2018, 46(11): 138-144. [4] 王玉芝, 王亮, 姜齐荣. 基于STATCOM的风电场SSCI附加阻尼抑制策略[J]. 电力系统自动化, 2019, 43(15): 49-59. Wang Yuzhi, Wang Liang, Jiang Qirong.STATCOM based supplementary damping mitigation strategy for subsynchronous control interaction in wind farms[J]. Automation of Electric Power Systems, 2019, 43(15): 49-59. [5] 苏田宇, 杜文娟, 王海风. 多直驱永磁同步发电机并联风电场次同步阻尼控制器降阶设计方法[J]. 电工技术学报, 2019, 34(1): 116-127. Su Tianyu, Du Wenjuan, Wang Haifeng.A reduced order design method for subsynchronous damping controller of multi-PMSGs parallel wind farm[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 116-127. [6] 陈宝平, 林涛, 陈汝斯, 等. 直驱风电场经VSC-HVDC并网系统的多频段振荡特性分析[J]. 电工技术学报, 2018, 33(增刊1): 176-184. Chen Baoping, Lin Tao, Chen Rusi, et al.Characteristics of multi-band oscillation for direct drive wind farm interfaced with VSC-HVDC system[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 176-184. [7] Chowdhury M A, Shafiullah G M.SSR mitigation of series-compensated DFIG wind farms by a nonlinear damping controller using partial feedback linearization[J]. IEEE Transactions on Power Systems, 2017, 33(3): 2528-2538. [8] 肖湘宁, 罗超, 廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术学报, 2017, 32(6): 85-97. Xiao Xiangning, Luo Chao, Liao Kunyu.Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 85-97. [9] Du Wenjuan, Wang Yang, Wang Haifeng, et al.Concept of modal repulsion for examining the subsynchronous oscillations caused by wind farms in power systems[J]. IEEE Transactions on Power Systems, 2018, 34(1): 518-526. [10] 张剑, 肖湘宁, 高本锋, 等. 双馈风力发电机的次同步控制相互作用机理与特性研究[J]. 电工技术学报, 2013, 28(12): 142-149. Zhang Jian, Xiao Xiangning, Gao Benfeng, et al.Mechanism and characteristic study on sub-synchronous control interaction of a DFIG-based wind-power generator[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 142-149. [11] 陈晨, 杜文娟, 王海风. 风电场接入引发电力系统次同步振荡机理综述[J]. 南方电网技术, 2018, 12(1): 84-93. Chen Chen, Du Wenjuan, Wang Haifeng.Review on mechanism of sub-synchronous oscillations caused by grid-connected wind farms in power systems[J]. Southern Power System Technology, 2018, 12(1): 84-93. [12] 任必兴, 杜文娟, 王海风. UPFC与系统的强动态交互对机电振荡模式的影响[J]. 电工技术学报, 2018, 33(11): 2520-2534. Ren Bixing, Du Wenjuan, Wang Haifeng.Impact of strong dynamic interaction between UPFC and system on electromechanical oscillation mode[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2520-2534. [13] Badrzadeh B, Sahni M, Zhou Yi, et al.General methodology for analysis of sub-synchronous interaction in wind power plants[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1858-1869. [14] 高本锋, 李忍, 杨大业, 等. 双馈风电机组次同步振荡阻尼特性与抑制策略[J]. 电力自动化设备, 2015, 35(12): 11-20. Gao Benfeng, Li Ren, Yang Daye, et al.Damping characteristics and countermeasure of DFIG sub-synchronous oscillation[J]. Electric Power Automation Equipment, 2015, 35(12): 11-20. [15] 刘晋. 双馈风电机组并网的次同步控制相互作用问题研究[D]. 北京: 华北电力大学, 2015. [16] Hu Jiaobin, Wang Bo, Wang Weisheng, et al.Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 720-730. [17] 杨琳. 新能源电力系统的次同步振荡与阻尼控制特性研究[D]. 北京: 华北电力大学, 2015. [18] 吕勇, 雷涛, 黄国华, 等. 并网双馈风力机感应发电机效应研究[J]. 电力系统保护与控制, 2016, 44(24): 154-158. Lü Yong, Lei Tao, Huang Guohua, et al.Induction generator effect analysis of doubly-fed wind generator connected to the power system[J]. Power System Protection and Control, 2016, 44(24): 154-158. [19] Tabesh A, Iravani R.Frequency-response analysis of torsional dynamics[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1430-1437. [20] Tabesh A, Iravani R.On the application of the complex torque coefficients method to the analysis of torsional dynamics[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 268-275. [21] 吕世荣, 刘晓鹏. 次同步谐振分析中复转矩系数与特征值之间的关系[J]. 电力系统自动化, 1999, 23(3): 16-18. Lü Shirong, Liu Xiaopeng.Relationship between complex torque coefficients and eigenvalues in subsynchronous resonance analysis[J]. Automation of Electric Power Systems, 1999, 23(3): 16-18. [22] 王积伟. 现代控制理论与工程[M]. 北京: 高等教育出版社, 2003. [23] Seyranian A P.Sensitivity analysis of multiple eigenvalues[J]. Journal of Structural Mechanics, 1993, 21(2): 261-284. [24] Dobson I.Is strong modal resonance a precursor to power system oscillations?[J]. IEEE Transactions on Circuits and Systems, 2001, 48(3): 340-349. [25] Canay I M.A novel approach to the torsional interaction and electrical damping of the synchronous machine part I: theory[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(10): 3630-3638. [26] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [27] Demello F P.Concept of synchronous machine stability as affected by excitation control[J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(4): 316-329. [28] Du Wenjuan, Bi Jingtian, Cao Jun, et al.A method to examine the impact of grid connection of the DFIGs on power system electromechanical oscillation modes[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3775-3784. [29] IEEE Subsynchronous Resonance Working Group. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Systems, 1977, 96(5): 1565-1572. [30] IEEE Subsynchronous Resonance Working Group. Second benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(5): 1057-1066. [31] Fan L, Kavasseri R, Miao Z L, et al.Modeling of DFIG-based wind farms for SSR analysis[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2073-2082.