Analysis of Influencing Factors on Damping Characteristics of Subsynchronous Oscillation Based on Singular Value Decomposition-Prony and Principal Component Regression
Zhang Qian1, Bian Xiaoyan1, Xu Xinyu2, Huang Ruanming3, Li Hanen3
1.Shanghai University of Electric Power Shanghai 200090 China; 2. State Grid Shanghai Pudong Electric Power Supply Company Shanghai 200120 China; 3. State Grid Shanghai Electric Power Economic & Technological Institute Shanghai 200223 China
Abstract:Accurate and effective identification of damping characteristics and its influencing factors of subsynchronous oscillation (SSO) in wind power grid connected system is the premise and key to solve the problem of SSO in actual wind power grid-connected system engineering. To avoid the complex modeling of traditional SSO analysis method, this paper proposes a method to analyze the influencing factors of SSO damping characteristics based on wind farm parameters and operation data. Firstly, singular value decomposition (SVD) based on singular value growth rate spectrum is applied to improve noise resistance performance of Prony and modal information is extracted from oscillation data. Secondly, the influencing factors of oscillation are selected and the correlation and collinearity diagnosis are carried out. Then, principal component regression (PCR) is adopted to reduce the collinearity in the regression analysis, the damping ratio estimation model is established to identify the dominant factors affecting the subsynchronous stability of the wind farm. Finally, the effectiveness and accuracy of the proposed method are verified by power system with DFIG integrated through VSC-HVDC.
张骞, 边晓燕, 徐鑫裕, 黄阮明, 李灏恩. 基于SVD-Prony及主成分回归的次同步振荡阻尼特性影响因素研究[J]. 电工技术学报, 2022, 37(17): 4364-4376.
Zhang Qian, Bian Xiaoyan, Xu Xinyu, Huang Ruanming, Li Hanen. Analysis of Influencing Factors on Damping Characteristics of Subsynchronous Oscillation Based on Singular Value Decomposition-Prony and Principal Component Regression. Transactions of China Electrotechnical Society, 2022, 37(17): 4364-4376.
[1] 薛安成, 付潇宇, 乔登科, 等. 风电参与的电力系统次同步振荡机理研究综述和展望[J]. 电力自动化设备, 2020, 40(9): 118-128. Xue Ancheng, Fu Xiaoyu, Qiao Dengke, et al.Review and prospect of research on sub-synchronous oscillation mechanism for power system with wind power participation[J]. Electric Power Automation Equipment, 2020, 40(9): 118-128. [2] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060. Wang Weisheng, Zhang Chong, He Guoqing, et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060. [3] 陈剑, 杜文娟, 王海风. 基于对抗式迁移学习的含柔性高压直流输电的风电系统次同步振荡源定位[J]. 电工技术学报, 2021, 36(22): 4703-4715. Chen Jian, Du Wenjuan, Wang Haifeng, et al.Location method of subsynchronous oscillation source in wind power system with VSC-HVDC based on adversarial transfer learning[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4703-4715. [4] 张明远, 肖仕武, 田恬, 等. 基于阻抗灵敏度的直驱风电场并网次同步振荡影响因素及参数调整分析[J]. 电网技术, 2018, 42(9): 2768-2777. Zhang Mingyuan, Xiao Shiwu, Tian Tian, et al.Analysis of SSO influencing factors and parameter adjustment for grid-connected full-converter wind farm based on impedance sensitivity[J]. Power System Technology, 2018, 42(9): 2768-2777. [5] 辛建波, 舒展, 赵诗萌, 等. 双馈-直驱混合风电场次同步振荡影响因素分析[J]. 电工电能新技术, 2019, 38(11): 24-32. XinJianbo, Shu Zhan, Zhao Shimeng, et al. Research on influencing factors of DFIG-PMSG hybrid wind farm sub-synchronous oscillations[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(11): 24-32. [6] 胡鹏, 艾欣, 肖仕武, 等. 静止无功发生器序阻抗建模及对次同步振荡影响因素的分析[J]. 电工技术学报, 2020, 35(17): 3703-3713. Hu Peng, Ai Xin, Xiao Shiwu, et al.Sequence impedance of static var generator and analysis of influencing factors on subsynchronous oscillation[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3703-3713. [7] 刘君, 赵龙, 杜文娟, 等. 并网光热发电场振荡稳定性影响因素分析与阻尼控制器设计[J]. 中国电机工程学报, 2021, 41(10): 3561-3574, 3680. Liu Jun, Zhao Long, Du Wenjuan, et al.Analysis of influencing factors and design of damping controller for grid-connected CSP farm oscillation stability[J]. Proceedings of the CSEE, 2021, 41(10): 3561-3574, 3680. [8] Xu Yanhui, Gu Zheng, Sun Kai.Characterization of subsynchronous oscillation with wind farms using describing function and generalized Nyquist criterion[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2783-2793. [9] 边晓燕, 刘洁, 周歧斌, 等. DFIG虚拟惯量控制对轴系振荡的影响[J]. 太阳能学报, 2020, 41(10): 285-291. Bian Xiaoyan, Liu Jie, Zhou Qibin, et al.Impact of DFIG virtual inertia control on shaft oscillation[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 285-291. [10] 边晓燕, 丁炀, 买坤, 等. 海上风电场经VSC-HVDC并网的次同步振荡与抑制[J]. 电力系统自动化, 2018, 42(17): 25-33. Bian Xiaoyan, Ding Yang, Mai Kun, et al.Subsynchronous oscillation caused by grid-connection of offshore wind farm through VSC-HVDC and its mitigation[J]. Automation of Electric Power Systems, 2018, 42(17): 25-33. [11] 李雪, 于洋, 姜涛, 等. 基于稀疏增强动态解耦的电力系统振荡模式与模态辨识方法[J]. 电工技术学报, 2021, 36(13): 2832-2843. Li Xue, Yu Yang, Jiang Tao, et al.Sparsity promoting dynamic mode decomposition based dominant modes and mode shapes estimation in bulk power grid[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2832-2843. [12] 陈剑, 杜文娟, 王海风. 采用深度迁移学习定位含直驱风机次同步振荡源机组的方法[J]. 电工技术学报, 2021, 36(1): 179-190. Chen Jian, Du Wenjuan, Wang Haifeng.A method of locating the power system subsynchronous oscillation source unit with grid-connected PMSG using deep transfer learning[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 179-190. [13] 李雪, 于洋, 姜涛, 等. 基于最优变量投影的电力系统主导振荡参数综合辨识[J]. 电工技术学报, 2022, 37(1): 165-178. Li Xue, Yu Yang, Jiang Tao, et al.Estimating dominant oscillation characteristics from measurement responses in power systems utilizing optimized variable projection[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 165-178. [14] 周书宇, 蔡国伟, 杨德友, 等. 随机数据驱动下的电力系统小干扰稳定在线评估方法[J/OL]. 电力系统自动化. https://kns.cnki.net/kcms/detail/32.1180. TP.20211014.1711.006.html. Zhou Shuyu, Cai Guowei, Yang Deyou, et al. Ambient data-driven on-line evaluation method of power system small signal stability[J/OL]. Automation of Electric Power Systems.https://kns.cnki.net/kcms/ detail/32.1180.TP.20211014.1711.006.html. [15] 辛国庆, 董唯光, 高锋阳, 等. 感应电能供电技术下含间谐波的谐波信号重构[J]. 电工技术学报, 2020, 35(21): 4544-4552. Xin Guoqing, Dong Weiguang, Gao Fengyang, et al.Reconstruction of harmonic signal with inter-harmonics under inductive power supply technology[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4544-4552. [16] 王娜娜, 刘涤尘, 廖清芬, 等. 基于EMD-TEO及信号能量分析法的主导低频振荡模式识别[J]. 电工技术学报, 2012, 27(6): 198-204. Wang Nana, Liu Dichen, Liao Qingfen, et al.Identification of the dominant inertial mode based on EMD-TEO and signal energy method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 198-204. [17] 李睿彧, 刘飞, 梁霖, 等. 基于参数优化变分模态分解的交流变频电机转子断条故障识别方法[J]. 电工技术学报, 2021, 36(18): 3922-3933. Li Ruiyu, Liu Fei, Liang Lin, et al.Fault identification of broken rotor bars for the variable frequency AC motor based on parameter optimized variational mode decomposition[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3922-3933. [18] 赵妍, 李武璟, 聂永辉. 次同步振荡的频率切片小波变换检测方法[J]. 电工技术学报, 2017, 32(6): 106-114. Zhao Yan, Li Wujing, Nie Yonghui.A method for subsynchronous oscillation detection using frequency slice wavelet transform[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 106-114. [19] 喻敏, 王斌, 陈绪轩, 等. 同步挤压小波变换在电力系统低频振荡模态参数提取中的应用[J]. 电工技术学报, 2017, 32(6): 14-20. Yu Min, Wang Bin, Chen Xuxuan, et al.Application of synchrosqueezed wavelet transform for extraction of the oscillatory parameters of low frequency oscillation in power systems[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 14-20. [20] Netto M, Mili L.Robust data filtering for estimating electromechanical modes of oscillation via the multichannel Prony method[J]. IEEE Transactions on Power Systems, 2017, 33(4): 4134-4143. [21] 张超, 王维庆, 邱衍江, 等. 大规模风电并网地区次同步谐波检测方法[J]. 高电压技术, 2019, 45(7): 2194-2202. Zhang Chao, Wang Weiqing, Qiu Yanjiang, et al.Detection method of subsynchronous harmonic in regions with large scale wind power paralleled in grid[J]. High Voltage Engineering, 2019, 45(7): 2194-2202. [22] Yang Xiaomei, Zhang Jianing, Xie Xiaorong, et al.Interpolated DFT-based identification of sub-synchronous oscillation parameters using synchrophasor data[J]. IEEE Transactions on Smart Grid, 2019, 11(3): 2662-2675. [23] 刘君, 肖辉, 曾林俊, 等. 基于RSSD和ICA算法的低频振荡模态参数辨识[J]. 电工技术学报, 2018, 33(21): 5051-5058. Liu Jun, Xiao Hui, Zeng Linjun, et al.Parameter identification of low frequency oscillation based on RSSD and ICA algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5051-5058. [24] 杨玉坤, 杨明玉. Prony算法在谐波、间谐波参数辨识中的应用[J]. 电力系统及其自动化学报, 2012, 24(3): 121-126. Yang Yukun, Yang Mingyu.Application of Prony algorithm in parameter identification of harmonics and inter-harmonics[J]. Proceedings of the CSU-EPSA, 2012, 24(3): 121-126. [25] 彭莉萍, 魏辉, 刘桂平, 等. 通过改进Prony算法辨识交流串补引起的次同步谐振模态参数[J]. 电力系统及其自动化学报, 2015, 27(增刊1): 63-67. Peng Liping, Wei Hui, Liu Guiping, et al.Detection of subcynchronous resonance caused by series capacitive compensation based on improved Prony[J]. Proceedings of the CSU-EPSA, 2015, 27(S1): 63-67. [26] 张景润, 李伟光, 李振, 等. 基于奇异值差分谱理论的大型转子轴心轨迹提纯[J]. 振动与冲击, 2019, 38(4): 199-205. Zhang Jingrun, Li Weiguang, Li Zhen, et al.Purification for a large rotor axis’s orbit based on the difference spectrum theory of singular value[J]. Journal of Vibration and Shock, 2019, 38(4): 199-205. [27] Zhong Jun, Bi Xiaowen, Shu Qin, et al.Partial discharge signal denoising based on singular value decomposition and empirical wavelet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8866-8873. [28] 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J/OL]. 中国电机工程学报, https://doi.org/1013334/j.0258-8013.pcsee. 202268. Wang Ping, Fan Lingfeng, Cheng Ze.A joint state of health and remaining useful life estimation approach for Lithium-ion batteries based on health factor parameter [J/OL]. Proceedings of the CSEE, https:// doi.org/10.13334/j.02588013.pcsee.202368. [29] Paul S, Chang J.Fast model-based design of high performance permanent magnet machine for next generation electric propulsion for urban aerial vehicle application[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 143-151. [30] 成珂, 孙琦琦, 马晓瑶. 基于主成分回归分析的气象因子对光伏发电量的影响[J]. 太阳能学报, 2021, 42(2): 403-409. Chen Ke, Sun Qiqi, Ma Xiaoyao.Influence of meteorological factors on photovoltaic power generation based on principal component regression analysis[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 403-409. [31] 陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45(13): 85-94. Chen Jinpeng, Hu Zhijian, Chen Weinan, et al.Load prediction of integrated energy system based on combination of quadratic modal decomposition and deep bidirectional long short-term memory and multiple linear regression[J]. Automation of Electric Power Systems, 2021, 45(13): 85-94. [32] Nguyen D, Rissanen S, Julkunen P, et al.Principal component regression on motor evoked potential in single-pulse transcranial magnetic stimulation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(8): 1521-1528. [33] 国家电网安全稳定计算技术规范: Q/GDW404—2010[S]. 2010. [34] IEEE Subsynchronous Resonance Working Group. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Trans actions on Power Apparatus System, 1977, 96(5): 1565-1572. [35] 赵学智, 叶邦彦, 陈统坚. 奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J]. 机械工程学报, 2010, 46(1): 100-108. Zhao Xuezhi, Ye Bangyan, Chen Tongjian.Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe[J]. Journal of Mechanical Engineering, 2010, 46(1): 100-108. [36] 代荡荡, 王先培, 龙嘉川, 等. 基于改进Protrugram和小波变换的超高频局部放电信号去噪方法[J]. 高电压技术, 2018, 44(11): 3577-3586. Dai Dangdang, Wang Xianpei, Long Jiachuan, et al.De-noising method of ultra-high frequency partial discharge signal based on improved Protrugram and wavelet transform[J]. High Voltage Engineering, 2018, 44(11): 3577-3586. [37] 王大为, 王召巴. 一种强噪声背景下微弱超声信号提取方法研究[J]. 物理学报, 2018, 67(21): 65-77. Wang Dawei, Wang Zhaoba.Weak ultrasonic signal detection in strong noise[J]. Acta Physica Sinica, 2018, 67(21): 65-77.