Flexible Atom Filtering for Subsynchronous Oscillations Mode Extraction
Liu Lin1, Li Haifeng1, Luo Kaiming1, Lu Xiao1, Lin Tao2, Xue Feng3
1. Jiangsu Electric Power Dispatching and Control Center of SGCC Nanjing 210024 China; 2. School of Electrical Engineering Wuhan University Wuhan 430072 China; 3. NARI Corporation Nanjing 211106 China
Abstract:The conventional subsynchronous oscillations (SSO) mode extraction methods have some shortages, such as lower mode identification, worse dynamic characteristics and poor anti-noise ability. Thus, this paper proposes a novel flexible atom filtering method, where the time and frequency window can be adjusted flexibly. Thus high mode identification and fast dynamic characteristics can be achieved. The central frequency of the filter is set within the SSO frequency scale. By filtering, the method can obtain the frequency and amplitude envelope curves. The least square method is deployed to get initial oscillation amplitude and attenuation factor. Matlab simulation cases and IEEE first benchmark cases in EMTDC/PSCAD have verified the correctness and effectiveness of the method. The simulation results have shown that the method can accurately identify the spectrum-intensive complex oscillation modes and time varying oscillations. The method is also robust to Gauss white noise.
刘林, 李海峰, 罗凯明, 陆晓, 林涛, 薛峰. 用于次同步振荡模态提取的柔性原子滤波[J]. 电工技术学报, 2017, 32(6): 98-105.
Liu Lin, Li Haifeng, Luo Kaiming, Lu Xiao, Lin Tao, Xue Feng. Flexible Atom Filtering for Subsynchronous Oscillations Mode Extraction. Transactions of China Electrotechnical Society, 2017, 32(6): 98-105.
[1] 高本锋, 刘晋, 李忍, 等. 风电机组的次同步控制相互作用研究综述[J]. 电工技术学报, 2015, 30(16): 154-161. Gao Benfeng, Liu Jin, Li Ren, et al. Studies of sub-synchronous control interaction in wind turbine generators[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 154-161. [2] 张鹏, 毕天姝, 杨奇逊, 等. 相近扭振频率并联发电机组次同步振荡研究[J].中国电机工程学报, 2015, 35(20): 5181-5187. Zhang Peng, Bi Tianshu, Yang Qixun, et al. Research on subsynchronous oscillation of parallel connected generators with close torsional frequencies[J]. Proceedings of the CSEE, 2015, 35(20): 5181-5187. [3] 穆子龙, 王渝红, 彭灿, 等. 四川电网由高压直流输电引起的次同步振荡特性研究[J]. 电力系统保护与控制, 2013, 41(3): 21-25. Mu Zilong, Wang Yuhong, Peng Can, et al. Study on SSO characteristic of Sichuan power grid caused by HVDC[J]. Power System Protection and Control, 2013, 41(3): 21-25. [4] 罗超, 肖湘宁, 张剑, 等. 并联型有源次同步振荡抑制器阻尼控制策略优化设计[J]. 电工技术学报, 2016, 31(21): 150-158. Luo Chao, Xiao Xiangning, Zhang Jian, et al. The optimal damping control strategy design of parallel active subsynchronous oscillation suppressor[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 150-158. [5] 岑炳成, 刘涤尘, 董飞飞, 等. 抑制次同步振荡的SVC非线性控制方法[J]. 电工技术学报, 2016, 31(4): 129-135. Cen Bingcheng, Liu Dichen, Dong Feifei, et al. Nonlinear control method of static var compensator for damping subsynchronous oscillation[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(4): 129-135. [6] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论与分析[M]. 北京: 清华大学出版社, 2002. [7] 顾威, 李兴源, 陈建国, 等. 基于瞬时无功理论的SVC抑制次同步振荡的附加控制设计[J]. 电力系统保护与控制, 2015, 43(5): 107-111. Gu Wei, Li Xingyuan, Chen Jianguo, et al. Additional control design of SVC for mitigating subsynchronous oscillation based on instantaneous reactive power theory[J]. Power System Protection and Control, 2015, 43(5): 107-111. [8] 鹿建成, 李啸骢, 黄维, 等. 基于SSSC和励磁协调抑制次同步振荡的线性最优控制器设计[J]. 电力系统保护与控制, 2015, 43(1): 21-27. Lu Jiancheng, Li Xiaocong, Huang Wei, et al. Linear optimal controller of static series synchronous com- pensator and excitation to suppress sub-synchronous oscillation[J]. Power System Protection and Control, 2015, 43(1): 21-27. [9] 杨琳, 肖湘宁. 电力系统稳定器相位补偿方式对次同步振荡的影响[J]. 电力系统保护与控制, 2014, 42(12): 1-7. Yang Lin, Xiao Xiangning. Impact of phase compensation methods of power system stabilizer on subsynchronous oscillation[J]. Power System Pro- tection and Control, 2014, 42(12): 1-7. [10] Liu Lin, Lin Tao, Xu Xialing, et al. Complex atom transform-based scheme for detection of subsynchronous oscillations[J]. International Transactions on Elec- trical Energy Systems, 2015, 25(2): 233-245. [11] 徐政. 复转矩系数法的实用性分析及其时域仿真实现[J]. 中国电机工程学报, 2000, 20(6): 1-4. Xu Zheng. The complex torque coefficient approach’s applicability analysis and its realization by time domain simulation[J]. Proceedings of the CSEE, 2000, 20(6): 1-4. [12] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009. [13] Choo Y C, Agalgaonkar A P, Muttaqi K M, et al. Analysis of subsynchronous torsional interaction of HVDC system integrated hydro units with small generator-to-turbine inertia ratios[J]. IEEE Transa- ctions on Power Systems, 2014, 29(3): 1064-1076. [14] Johansson N, Ängquist L, Nee H P. A comparison of different frequency scanning methods for study of subsynchronous resonance[J]. IEEE Transactions on Power Systems, 2011, 26(1): 356-363. [15] 李天云, 高磊, 陈晓东, 等. 基于HHT的同步电机参数辨识[J]. 中国电机工程学报, 2006, 26(8): 153-158. Li Tianyun, Gao Lei, Chen Xiaodong, et al. Parameter identification of synchronous machine based on Hilbert-Huang transform[J]. Proceedings of the CSEE, 2006, 26(8): 153-158. [16] Bongiorno M, Svensson J, Ängquist L. Online estimation of subsynchronous voltage components in power systems[J]. IEEE Transactions on Power Delivery, 2008, 23(1): 410-418. [17] Tripathy P, Srivastava S C, Singh S N. A modified TLS-ESPRIT-based method for low-frequency mode identification in power systems utilizing synchro- phasor measurements[J]. IEEE Transactions on Power Systems, 2011, 26(2): 719-727. [18] 王宇静, 于继来. 电力系统振荡模态的矩阵束辨识法[J]. 中国电机工程学报, 2007, 27(19): 12-17. Wang Yujing, Yu Jilai. Matrix pencil methods of oscillation modes identification in power systems[J]. Proceedings of the CSEE, 2007, 27(19): 12-17. [19] 董飞飞, 刘涤尘, 廖清芬, 等. 基于阻尼正弦原子分解的次同步振荡模态辨识[J]. 中国电机工程学报, 2013, 33(19): 119-125. Dong Feifei, Liu Dichen, Liao Qingfen, et al. Subsynchronous oscillation modal identification based on damping sine atomic decomposition[J]. Proceedings of the CSEE, 2013, 33(19): 119-125. [20] Lin Xiangning, Zhang Hao, Liu Pei, et al. Wavelet based scheme for detection of torsional oscillation[J]. IEEE Transactions on Power Systems, 2002, 17(4): 1096-1101. [21] Loughlin P J, Cohen L. The uncertainty principle: global, local, or both?[J]. IEEE Transactions on Signal Process, 2004, 52(5): 1218-1227. [22] Bongiorno M, Svensson J, Ängquist L. Online estimation of subsynchronous voltage components in power systems[J]. IEEE Transactions on Power Delivery, 2008, 23(1): 410-418. [23] 刘林, 林涛, 徐遐龄. 采用复原子解耦调制滤波的次同步振荡模态分析方法及其仿真[J]. 高电压技术, 2011, 37(8): 2053-2058. Liu Lin, Lin Tao, Xu Xialing. Subsynchronous oscillation mode analysis method and simulation using complex atom filter with decoupling modu- lation[J]. High Voltage engineering, 2011, 37(8): 2053-2058. [24] Tuncer T E, Aktas M. LSE and MSE optimum partition-based FIR-IIR deconvolution filters with best delay[J]. IEEE Transactions on Signal Pro- cessing, 2005, 53(10): 3780-3790. [25] IEEE Subsynchronous Resonance Working Group. Terms, definitions and symbols for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(6): 1326-1334.