Effect of Surface-Modified Electrode by Low Temperature Plasma on Charge Injection of Liquid Dielectric
Wu Shilin1, Yang Qing1, Shao Tao2
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China; 2. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China
Abstract:The space charge is injected into the liquid by the electrode materials under a strong electric field, which causes electric field distortion and affects the insulation properties of the liquid. In this paper, in order to investigate the effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric, the surface of aluminum, copper and stainless steel was sprayed with TiO2 by vacuum sputtering coating method. The breakdown voltage of the liquid dielectric was tested and the distribution of space charge in the liquid dielectric was also measured by Kerr electro-optic effect before and after modification. The results show that the breakdown voltage of the liquid dielectric increases after the surface modification of aluminum, copper and stainless steel, the increase rates are 6.7%, 4.1% and 9.0%, respectively. The sputtered titanium dioxide film increases the surface shielding layer of the aluminum and copper electrodes, which weakens the electric field distortion of the cathode, resulting in a reduction in the amount of space charge injected into the liquid. Furthermore, the liquid dielectric under the stainless-steel electrode forms a bipolar charge injection, because the particles generated during the sputtering process hit the electrode to change the microstructure of the electrode surface.
吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16): 3494-3503.
Wu Shilin, Yang Qing, Shao Tao. Effect of Surface-Modified Electrode by Low Temperature Plasma on Charge Injection of Liquid Dielectric. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503.
[1] Zou Ping, Li Jian, Sun Caixin, et al.Dielectric prop- erties and electrodynamic process of natural ester- based insulating nanofluid[J]. Modern Physics Letters B, 2011, 25(25): 2021-2031. [2] Ghasemi J, Jafarmadar S, Nazari M.Effect of magnetic nanoparticles on the lightning impulse breakdown voltage of transformer oil[J]. Journal of Magnetism & Magnetic Materials, 2015, 389: 148-152. [3] Lee J C, Seo H S, Kim Y J.The increased dielectric breakdown voltage of transformer oil-based nano- fluids by an external magnetic field[J]. International Journal of Thermal Sciences, 2012, 62: 29-33. [4] 温福新, 董明, 任明, 等. 基于修正的Havriliak- Negami模型的SiO2纳米改性变压器油宽频介电弛豫特性[J]. 电工技术学报, 2016, 31(7): 166-172. Wen Fuxin, Dong Ming, Ren Ming, et al.The broadband dielectric relaxation properties of the transformer oil based on SiO2 nanoparticles using modified Havriliak-Negami model[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 166-172. [5] Hwang J G, Zahn M, Osullivan F M, et al.Effects of na-noparticle charging on streamer development in transformer oil-based nanofluids[J]. Journal of Applied Physics, 2010, 107(1): 416-622. [6] Sun Anbang, Huo Chao, Zhuang Jie.Formation mechanism of streamer discharges in liquids: a review[J]. High Voltage, 2016, 1(2): 74-80. [7] Sima Wenxia, Guo Hongda, Sun Potao, et al.Effect of nanoparticles on impulse breakdown performance of propylene carbonate based on modified Kerr electro-optic measurements[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(5): 2784-2790. [8] Zahn M, Ohki Y, Fenneman D B, et al.Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design[J]. Proceedings of the IEEE, 1986,74(9): 1182-1221. [9] Zahn M, Ohki Y, Rhoads K, et al. Electro-optic charge injection and transport measurements in highly purified water and water/ethylene glycol mixtures[J]. IEEE Transactions on Electrical Insula- tion, 1985, EI-20(2): 199-211. [10] Zhang X, Zahn M.Kerr electro-optic field mapping study of the effect of charge injection on the impulse break-down strength of transformer oil[J]. Applied Physics Letters, 2013, 103(16): 1123-1182. [11] Vázquez H, Flores F, Oszwaldowski R, et al.Barrier for-mation at metal-organic interfaces: dipole formation and the charge neutrality level[J]. Applied Surface Science, 2012, 234(1): 107-112. [12] Russel M K, Selvaganapathy P R, Ching C Y.Effect of electrode surface topology on charge injection characteristics in dielectric liquids: an experimental study[J]. Journal of Electrostatics, 2014, 72(6): 487-492. [13] D'Agostino R, Favia P, Oehr C, et al. Low- temperature plasma processing of materials: past, present, and future[J]. Plasma Processes & Polymers, 2005, 2(1): 7-15. [14] 李盛涛, 聂永杰, 闵道敏, 等. 固体电介质真空沿面闪络研究进展[J]. 电工技术学报, 2017, 32(8): 1-9. Li Shengtao, Nie Yongjie, Min Daomin, et al.Research progress on vacuum surface flashover of solid dielectrics[J]. Transactions of China Electro- technical Society, 2017, 32(8): 1-9. [15] Sanchis M R, Blanes V, Blanes M, et al.Surface modifi-cation of low density polyethylene (LDPE) film by low pressure O2 plasma treatment[J]. European Polymer Journal, 2006, 42(7): 1558-1568. [16] Shao Tao, Zhou Yixiao, Zhang Cheng, et al.Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1747-1754. [17] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH4直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Elec- trotechnical Society, 2017, 32(2): 61-69. [18] Wang Qi, Wang Yanhui, Wang Haochen, et al.Investigation of NO removal using a pulseassisted RF discharge[J]. Plasma Science & Technology, 2017, 19(6): 93-98. [19] Qian Muyang, Li Gui, Liu Sanqiu, et al.Effect of pulse voltage rising time on discharge characteristics of a helium-air plasma at atmospheric pressure[J]. Plasma Science & Technology, 2017, 19(6): 102-107. [20] 徐书婧, 李日红, 俞哲, 等. 氧等离子体反应器中氧化铝电介质特性[J]. 电工技术学报, 2017, 32(8): 74-81. Xu Shujing, Li Rihong, Yu Zhe, et al.Characteristics of alumina dielectric used for oxygen plasma reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 74-81. [21] 唐炬, 潘成, 王邸博, 等. 高压直流绝缘材料表面电荷积聚研究进展[J]. 电工技术学报, 2017, 32(8): 10-21. Tang Ju, Pan Cheng, Wang Dibo, et al.Development of studies about surface charge accumulation on insulating material under HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 10-21. [22] 徐书婧, 李日红, 俞哲, 等. 氧等离子体反应器中氧化铝电介质特性[J]. 电工技术学报, 2017, 32(8): 74-81. Xu Shujing, Li Rihong, Yu Zhe, et al.Characteristics of alumina dielectric used for oxygen plasma reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 74-81. [23] Li Chuanyang,Hu Jun,Lin Chuanjie, et al.The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites[J]. Journal of Physics D: Applied Physics, 2016, 49(44): 445304. [24] Shao Tao, Wang Ruixue, Zhang Cheng, et al.Atmosphericpressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20. [25] Zhang Cheng, Qiu Jintao, Kong Fei, et al.Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 014011. [26] Shao Tao, Yang Wenjin, Zhang Cheng, et al.Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105(7): 071607. [27] 赵文博, 郝春成, 于庆先, 等. 电极材料表面改性对交联聚乙烯内空间电荷注入的影响[J]. 绝缘材料, 2015(2): 49-52. Zhao Wenbo, Hao Chuncheng, Yu Qingxian, et al.Effect of electrode surface modification on space charge injection in XLPE[J]. Insulating Materials, 2015(2): 49-52. [28] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [29] Wang Ruixue, Li Wenyao, Zhang Cheng, et al.Thin insulating film deposition on copper by atmospheric- pressure plasmas[J]. Plasma Processes & Polymers, 2017, 14(7): e1600248. [30] 崔超超, 章程, 任成燕, 等. 大气压等离子体射流Cu表面改性抑制微放电[J]. 中国电机工程学报, 2018, 38(5): 1553-1561. Cui Chaochao, Zhang Cheng, Ren Chengyan, et al.Surface modification of Cu by atmospheric pressure plasma jet for micro discharge inhibition[J]. Proceedings of the CSEE, 2018, 38(5): 1553-1561. [31] Yang Qing, Jin Yang, Sima Wenxia, et al.Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage[J]. Aip Advances, 2016, 6(4): 199-704. [32] Sima Wenxia, Song He, Yang Qing, et al.Time- continuous Kerr electro-optic field mapping measurement under impulse voltage using array photodetector[J]. Applied Physics Letters, 2015, 107(8): 129-132. [33] Yang Qing, Liu Mengna, Sima Wenxia, et al.Effect of electrode materials on the space charge distribution of an Al2O3 nano-modified transformer oil under impulse voltage conditions[J]. Journal of Physics D: Applied Physics, 2017, 50(46): 465106. [34] Zhang Xuping, Zahn M.Fractal-like charge injection kinetics in transformer oil stressed by high-voltage pulses[J]. Applied Physics Letters, 2014, 104(16): 192910-11.