Bidirectional Power Constraints and Influence of Doubly Fed Induction Generator Participating in Continuous Frequency Regulation
Mu Gang1, Cai Tingting1,2, Yan Gangui1, Liu Hongbo1, Liu Sutong1
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China;; 2. School of Electrical and Electronics Engineering North China Electric Power University Beijing 102206 China
Abstract:Wind turbines participating in frequency regulation is one of the means to solve the inadequate regulation capacity in high proportion renewable energy power system. The doubly fed induction generator (DFIG) can reserve part of power to obtain bidirectional frequency regulation capability through rotor over-speed. The available bidirectional regulation power of the wind turbine is limited by the rated speed. According to the elementary operation equation of the wind turbine, the expression of maximum regulation power of DFIG through rotor over-speed is deduced in this paper. It is pointed out that the available bidirectional regulation power of the wind turbine is constrained by the power reservation coefficient and the maximum regulation power. The influence of bidirectional power constraints is analyzed when wind turbines participate in continuous frequency regulation, and the adjustment coefficient area of the wind turbine is given. Based on 24-hour measured data of a wind farm, the level of wind turbines frequency regulation power that meets the adjustment coefficient is simulated and calculated during the course of the actual frequency variation. The influence of power reservation coefficient on frequency quality, frequency regulation power of the wind turbine and utilization of wind power is empirically analyzed. The results show that the effects of bidirectional power constraints must be considered when evaluating the effectiveness of wind turbines in continuous frequency regulation.
穆钢, 蔡婷婷, 严干贵, 刘洪波, 刘宿彤. 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34(8): 1750-1759.
Mu Gang, Cai Tingting, Yan Gangui, Liu Hongbo, Liu Sutong. Bidirectional Power Constraints and Influence of Doubly Fed Induction Generator Participating in Continuous Frequency Regulation. Transactions of China Electrotechnical Society, 2019, 34(8): 1750-1759.
[1] 国家能源局. 国家能源局新闻发布会介绍2017年度相关能源情况等[EB/OL]. 北京: 国家能源局. 2018[2018-01-28]. http://www.nea.gov.cn/201801/24/ c_136921015.htm. [2] Yuan-Kang Wu, Shih-Ming Chang, Yi-Liang Hu, et al.Frequency regulation technologies from a single wind turbine or wind farm[C]//IEEE International Conference on Applied System Innovation, Chiba, Japan, 2018: 1240-1243. [3] 秦超, 刘艳丽, 余贻鑫, 等. 含双馈风机电力系统的动态安全域[J]. 电工技术学报, 2015, 30(18): 157-163. Qin Chao, Liu Yanli, Yu Yixin, et al.Dynamic security region of power systems with double fed induction generator[J]. Transactions of China Elec- trotechnical Society, 2015, 30(18): 157-163. [4] 张祥宇, 付媛, 王毅, 等. 含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J]. 电工技术学报, 2015, 30(1): 159-169. Zhang Xiangyu, Fu Yuan, Wang Yi, et al.Integrated PSS controller of variable speed wind turbines with virtual inertia and damping control[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 159-169. [5] 娄尧林, 蔡旭, 叶杭冶, 等. 基于转矩随动控制的风电机组最优发电研究[J]. 电工技术学报, 2018, 32(6): 226-233. Lou Yaolin, Cai Xu, Ye Hangye, et al.Optimal generator study base on torque follow-up control for wind turbine[J]. Transaction of China Electro- technical Society, 2018, 32(6): 226-233. [6] 倪琳娜, 罗吉, 王少荣. 含风电电力系统的频率控制[J]. 电工技术学报, 2011, 26(1): 235-241. Ni Linna, Luo Ji, Wang Shaorong.Frequency control of power system with wind power integration[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 235-241. [7] 吴子双, 于继来, 彭喜云. 高风速段次优功率追踪方式的风电调频方法[J]. 电工技术学报, 2013, 28(5): 112-119. Wu Zishuang, Yu Jilai, Peng Xiyun.DFIG’s frequency regulation method only for high wind speed with suboptimal power tracking[J]. Transaction of China Electrotechnical Society, 2013, 28(5): 112-119. [8] Xue Yingcheng, Tai Nengling.Review of con- tribution of frequency control through variable speed wind turbine[J]. Renewable Energy, 2011, 36(6): 1671-1677. [9] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232. Zhang Guanfeng, Yang Junyou, Sun Feng, et al.Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232. [10] 赵冬梅, 许瑞庆, 郑立鑫. 全风况下双馈风机参与调频的协调控制策略研究[J]. 电力系统保护与控制, 2017, 45(12): 53-59. Zhao Dongmei, Xu Ruiqing, Zheng Lixin.Research on coordinated control strategy for DFIGs parti- cipating in system frequency regulation with different wind[J]. Power System Protection and Control, 2017, 45(12): 53-59. [11] 贾锋, 李征, 蔡旭, 等. 提高大型风电机组恒转速段发电量的变桨策略[J]. 电工技术学报, 2017, 32(1): 58-68. Jia Feng, Li Zheng, Cai Xu, et al.Advanced pitch control for improving power production for large scale wind energy conversion system under constant speed region[J]. Transactions of China Electro- technical Society, 2017, 32(1): 58-68. [12] 赵晶晶, 吕雪, 符杨, 等. 基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J]. 电工技术学报, 2015, 30(5): 59-68. Zhao Jingjing, Lü Xue, Fu Yang, et al.Frequency regulation of the wind/photovoltaic/diesel microgrid based on DFIG cooperative strategy with variable coefficients between virtual inertia and over-speed control[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 59-68. [13] Chie L R C, Lin W T, Yin Y C. Enhancing frequency response control by DFIGs in the high wind penetrated power systems[J]. IEEE Transactions on Power Systems, 2011, 26(2): 710-718. [14] 赵嘉兴, 高伟, 上官明霞, 等. 风电参与电力系统调频综述[J]. 电力系统保护与控制, 2017, 45(21): 157-169. Zhao Jiaxing, Gao Wei, Shangguan Mingxia, et al.Review on frequency regulation technology of power grid by wind farm[J]. Power System Protection and Control, 2017, 45(21): 157-169. [15] Wu Ziping, Gao Wenzhong, Wang Jianhui, et al.A coordinated primary frequency regulation from permanent magnet synchronous wind turbine generation[C]//2012 IEEE in Power Electronics and Machines in Wind Applications (PEMWA), Denver, 2012: 1-6. [16] Slootweg J G, Polinder H, Kling W L.Representing wind turbine electrical generating systems in funda- mental frequency simulations[J]. IEEE Transactions on Energy Conversion, 2003, 18(4): 516-524. [17] 王金铭, 卢奭瑄, 何新, 等. 大型风力发电机风能利用系数参数拟合的研究[J]. 太阳能学报, 2012, 33(2): 221-225. Wang Jinming, Lu Shixuan, He Xin, et al.Study on parameters matching of rotor power coefficient for large scale wind turbine[J]. Acta Energiae Solaris Sinica, 2012, 33(2): 221-225. [18] 叶杭冶. 风力发电机组的控制技术[M]. 北京: 机械工业出版社, 2008. [19] Kundur P.Power system stability and control[M]. New York: McGraw-Hill, 1994. [20] 米增强, 刘力卿, 余洋, 等. 限电弃风工况下双馈风电机组有功及调频控制策略[J]. 电工技术学报, 2015, 30(15): 81-88. Mi Zengqiang, Liu Liqing, Yu Yang, et al.The control strategy of active power and frequency regulation of DFIG under wind abandon condition[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 81-88. [21] 周强, 汪宁渤, 何世恩, 等. 高弃风弃光背景下中国新能源发展总结及前景探究[J]. 电力系统保护与控制, 2017, 45(10): 146-154. Zhou Qiang, Wang Ningbo, He Shien, et al.Summary and prospect of China's new energy development under the background of high abandoned new energy power[J]. Power System Protection and Control, 2017, 45(10): 146-154.