1. School of Electrical Engineering Wuhan University Wuhan 430072 China; 2. Central Southern China Electric Power Design Institute Co. Ltd China Power Engineering Consulting Group Corporation Wuhan 430072 China; 3. Central China Electric Power Dispatching and Communication Center Wuhan 430077 China
Abstract:As the main transmission way of large-scale renewable energy resources, the form of wind power and solar power integrated grid by HVDC plays an important role in consuming new energy elsewhere. However, it also brings the potential risk of subsynchronous / super-synchronous oscillation (SSO/SupSO). The problem of SSO/SupSO caused by wind power, especially for the problem of damping coupling among machine-side controller (MSC)/grid-side controller (GSC) parameters of the direct-drive permanent magnet synchronous generator (DD-PMSG) and sending-end controller (SEC) / receiving-end controller (REC) parameters of VSC-HVDC, is still to be studied in depth. Based on the background mentioned above, this paper optimizes the controller parameters of the wind power integrated system by VSC-HVDC to suppress the SSO/SupSO, and transforms the damping coupling issue into the controller parameters coordination optimization issue. In detail, the dominant controller parameters are taken as the optimization variables in this paper. And the oscillation modes for improvement are selected as the objective modes. Maximizing the damping ratios of the objective modes is the optimization object. Then, the coordinated optimization model of the dominant controller parameters is established. The I-PGSA algorithm which has excellent performance in convergence speed and global searching ability is used to solve the coordinated optimization model, and the optimal controller parameters are obtained. The model tracking technique is used to track and lock the objective modes in the process of coordinated optimization, which makes the process of optimization more pertinent. The concept of dynamic damping ratio is further proposed, which is contained in constrains. It realizes the dynamic setting in the threshold of damping ratio of each oscillation mode in the process of optimization, which makes the process of optimization more rational. Finally, the time domain simulation based on PSCAD/EMTDC proves the effectiveness and superiority of the proposed coordinated optimization strategy.
盛逸标,林涛,陈宝平,陈汝斯,郭紫昱,徐遐龄. 面向新能源外送系统次/超同步振荡的控制器参数协调优化[J]. 电工技术学报, 2019, 34(5): 983-993.
Sheng Yibiao, Lin Tao, Chen Baoping, Chen Rusi, Guo Ziyu, Xu Xialing. Coordination and Optimization of Controller Parameters for Subsynchronous/Super-Synchronous Oscillation in New Energy Delivery Systems. Transactions of China Electrotechnical Society, 2019, 34(5): 983-993.
[1] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060. Wang Weisheng, Zhang Chong, He Guoqing, et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060. [2] 肖湘宁, 罗超, 廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术学报, 2017, 32(6): 85-97. Xiao Xiangning, Luo Chao, Liao Kunyu.Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 85-97. [3] 倪以信. 动态电力系统的理论和分析[M]. 1版. 北京: 清华大学出版社, 2002. [4] 文劲宇, 孙海顺, 程时杰. 电力系统的次同步振荡问题[J]. 电力系统保护与控制, 2008, 36(12): 1-7. Wen Jinyu, Sun Haishun, Cheng Shijie.Subsynchronous oscillation in electric power systems[J]. Power System Protection and Control, 2008, 36(12): 1-7. [5] 江桂芬, 孙海顺, 陈霞, 等. 宁夏多直流外送系统SSO 特性分析及次同步阻尼控制器设计[J]. 电工技术学报, 2017, 32(增刊1): 30-38. Jiang Guifen, Sun Haishun, Chen Xia, et al.Sub-synchronous oscillation characteristics analysis and SSDC design of Ningxia multiple DC transmissions system[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 30-38. [6] 王晖, 李莹, 李文锋, 等. 并网逆变器复合电流环引起次/超同步振荡机理研究[J]. 电网技术, 2017, 41(4): 1061-1068. Wang Hui, Li Ying, Li Wenfeng, et al.Mechanism research of subsynchronous and supersynchronous oscillations caused by compound current loop of grid-connected inverter[J]. Power System Technology, 2017, 41(4): 1061-1068. [7] 边晓燕, 施磊, 宗秀红, 等. 多运行方式下风电机组变频器参与次同步相互作用的分析与抑制[J]. 电工技术学报, 2017, 32(11): 38-46. Bian Xiaoyan, Shi Lei, Zong Xiuhong, et al.Analysis and mitigation of wind interaction under turbine converters in sub-ynchronous multi-perating conditions[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 38-46. [8] 戴金水, 吕敬. 大型海上风电场经VSC–HVDC并网的次同步振荡阻尼特性分析[J]. 电气应用, 2016, 35(8): 51-57. Dai Jinshui, Lü Jing.Analysis of subsynchronous oscillation damping characteristics of large offshore wind farms interfaced with VSC-HVDC connected to power grid[J]. Electrotechnical Application, 2016, 35(8): 51-57. [9] 谢小荣, 刘华坤, 贺敬波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366-2372. Xie Xiaorong, Liu Huakun, He Jingbo, et al.Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366-2372. [10] Jing L, Cai Xu, Mohammad A, et al.Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms[J]. IET Generation, Transmission & Distribution, 2018, 12(4): 1021-1029. [11] 陈宝平, 林涛, 陈汝斯, 等. 采用VSC-HVDC并网的直驱风电场次/超同步振荡特性分析[J]. 电力系统自动化, 2018, 26(10): 167-173. Chen Baoping, Lin Tao, Chen Rusi, et al.Characteristics of sub/super-synchronous oscillation caused by grid-connected direct-drive wind farm via VSC-HVDC system[J]. Automation of Electric Power Systems, 2011, 26(10): 167-173. [12] Faried S O, Unal I, Rai D, et al.Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators[J]. IEEE Transactions on Power Systems, 2013, 28(1): 452-459. [13] Fan Lingling, Miao Zhixin.Mitigating SSR using DFIG-based wind generation[J]. IEEE Transactions on Sustainable Energy, 2012, 3(3): 349-358. [14] Fan Lingling, Zhu Chanxia, Miao Zhixin, et al.Modal analysis of a DFIG-based wind farm interfaced with a series compensated network[J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1010-1020. [15] 时伯年, 李树鹏, 梅红明, 等. 含常规直流和柔性直流的交直流混合系统次同步振荡抑制研究[J]. 电力系统保护与控制, 2016, 44(20): 113-118. Shi Bonian, Li Shupeng, Mei Hongming, et al.Research on the SSO restraining of hybrid system containing LCC_HVDC and VSC_HVDC[J]. Power System Protection and Control, 2016, 44(20): 113-118. [16] 罗超, 肖湘宁, 张剑, 等. 并联型有源次同步振荡抑制器阻尼控制策略优化设计[J]. 电工技术学报, 2016, 31(21): 150-157. Luo Chao, Xiao Xiangning, Zhang Jian, et al.The optimal damping control strategy design of parallel active subsynchronous oscillation suppressor[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 150-157. [17] Varma R K, Auddy S, Semsedini Y.Mitigation of subsynchronous resonance in a series-compensated wind farm using FACTS controllers[J]. IEEE Transactions on Power Delivery, 2008, 23(3): 1645-1654. [18] Jing L, Cai Xu, Molinas M.Frequency domain stability analysis of MMC-based HVDC for wind farm integration[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(1): 141-151. [19] 杨洁, 刘开培, 余俞, 等. 交流电网互联的双端柔性直流输电系统小信号建模[J]. 中国电机工程学报, 2015, 35(9): 2177-2184. Yang Jie, Liu Kaipei, Yu Yu, et al.Small signal modeling for VSC-HVDC used in AC grid interconnection[J]. Proceedings of the CSEE, 2015, 35(9): 2177-2184. [20] 刘忠义, 刘崇茹. 机械轴系模型对直驱永磁同步风力发电机暂态分析的影响[J]. 电工技术学报, 2016, 31(2): 145-152. Liu Zhongyi, Liu Chongru.Influence of Shafting models in the transient analysis of wind turbines with permanent magnet synchronous generators[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 145-152. [21] 刘为杰, 姜建国. 直驱永磁同步风电机组次同步振荡建模与分析[J]. 电机与控制应用, 2017, 44(1): 97-103. Liu Weijie, Jiang Jianguo.Modeling and analysis for direct-drive permanent magnet synchronous wind turbine generator in subsvnchronous oscillation[J]. Electric Machines & Control Application, 2017, 44(1): 97-103. [22] 耿华, 许德伟, 吴斌. 永磁直驱变速风电系统的控制及稳定性分析[J]. 中国电机工程学报, 2009, 29(33): 68-75. Geng Hua, Xu Dewei, Wu Bin.Control and stability analysis for the permanent magnetic synchronous generator based direct driven variable speed wind energy conversion system[J]. Proceedings of the CSEE, 2009, 29(33): 68-75. [23] 汤广福. 基于电压源换流高压直流输电技术[M]. 北京: 中国电力出版社, 2009. [24] Chen Baoping, Lin Tao, Chen Rusi, et al.Coordinative optimization of multi-channel PSS and TCSC damping controller to suppress the low-frequency and subsynchronous oscillation[C]//Power & Energy Society General Meeting, Bostan, USA, 2016: 1-5. [25] 张健南, 林涛, 余光正, 等. 大规模电力系统阻尼控制器协调优化方法[J]. 电网技术, 2014, 38(9): 2466-2472. Zhang Jiannan, Lin Tao, Yu Guangzheng, et al.Coordinated optimization of damping controllers in large-scale power system[J]. Power System Technology, 2014, 38(9): 2466-2472. [26] 徐遐龄, 林涛, 高玉喜, 等. 基于CBR和OAPID的互联电网区间模式振荡预警[J]. 电力自动化设备, 2013, 33(8): 88-93. Xu Xialing, Lin Tao, Gao Yuxi, et al.Warning of inter-area mode oscillation based on CBR and OAPID for interconnected power grids[J]. Electric Power Automation Equipment, 2013, 33(8): 88-93. [27] 陈宝平, 林涛, 陈汝斯, 等. 机侧与网侧多通道附加阻尼控制器参数协调综合抑制低频振荡和次同步振荡[J]. 电力自动化设备, 2018, 38(11): 50-56. Chen Baoping, Lin Tao, Chen Rusi, et al.Coordinative optimization of rotor-side and grid-side multi-channel supplementary damping controller to suppress the low-frequency and subsynchronous oscillations[J]. Electric Power Automation Equipment, 2018, 38(11): 50-56.