Abstract:Graphene is a new two-dimensional carbon material. Its special lattice structure and the nature of the carbon element make it perform excellent in the fields of electricity, heat, light, force, and so on. It also has great potential for applications in some branches of the electrical field. This paper first introduced the structure and common preparation methods of graphene. Then the current research status and applications mechanism of graphene in several fields of electrical field were reviewed, namely, lithium ion battery field, super capacitor field, transistor field and electromagnetic shielding field. Finally, it is concluded that the future research of graphene will focus on the optimization of production process to improve its own structure and the composition with other materials.
庞思远, 刘希喆. 石墨烯在电气领域的研究与应用综述[J]. 电工技术学报, 2018, 33(8): 1705-1722.
Pang Siyuan, Liu Xizhe. Review on Research and Application of Graphene in Electrical Field. Transactions of China Electrotechnical Society, 2018, 33(8): 1705-1722.
[1] Bolotin K I, Sikes K J, Jiang Z, et al.Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355. [2] Basko D M.Boundary problems for Dirac electrons and edge-assisted Raman scattering in graphene[J]. Physical Review B, 2009, 79(20): 205428-205449. [3] Akhmerov A R, Beenakker C W J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice[J]. Physical Review B, 2008, 77(8): 085423. [4] Jin Zifei, Tong Guoping, Jiang Yongjin.Effect of the non-nearest-neighbor hopping on the electronic structure of armchair graphene nanoribbons[J]. Acta Physica Sinica, 2009, 58(12): 8537-8543. [5] 袁建辉. 石墨烯中的电子及其输运性质的研究[D]. 武汉: 华中科技大学, 2012. [6] 冯婷婷. 石墨烯场效应晶体管的制备及其特性研究[D]. 北京: 清华大学, 2014. [7] 郝明. 石墨烯基复合材料超级电容性能研究[D]. 武汉: 湖北大学, 2016. [8] 司晨. 石墨烯及其衍生物: 掺杂、应变与界面效应的理论研究[D]. 北京: 清华大学, 2014. [9] 代青青. 嵌入型石墨烯量子点和引入晶界石墨烯纳米带的电子和磁学性质研究[D]. 长春: 吉林大学, 2014. [10] 曾照凤. 金属氯化物调节石墨烯光电学性质的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [11] 吕晓玲. 石墨烯体系中自旋及谷极化的电子输运性质[D]. 长春: 吉林大学, 2014. [12] 宋光耀. 边界裁剪对石墨烯纳米带电子性质的调控[D]. 上海: 华东师范大学, 2015. [13] Girit C O, Meyer J C, Erni R, et al.Graphene at the edge: stability and dynamics[J]. Science, 2009, 323: 1705-1708. [14] Wang Jiangjun, Zhu Mingyao, Outlaw R A, et al.Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2004, 42(14): 2867-2872. [15] Berger C, Song Zhimin, Li Xuebin, et al.Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196. [16] 邹鹏, 石文荣, 杨书华, 等. 石墨烯的化学气相沉积法制备及其表征[J]. 材料科学与工程学报, 2014, 32(2): 264-267. Zou Peng, Shi Wenrong, Yang Shuhua, et al.Preparation of graphene by chemical vapor deposition[J]. Journal of Materials Science & Engineering, 2014, 32(2): 264-267. [17] 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894. He Dafang, Wu Jian, Liu Zhanjian, et al.Recent advances in preparation of graphene for appli- cations[J]. CIESC Journal, 2015, 66(8): 2888-2894. [18] 薛迎辉, 胡雪波, 张琴, 等. 石墨烯基电极材料结构设计及其在二次电池中的应用[J]. 中国科技: 技术科学, 2015, 45(12): 1227-1244. Xue YingHui, Hu Xuebo, Zhang Qin, et al. Structure design of graphene based electrode materials and its application in secondary battery[J]. Scientia Sinica: Technologica, 2015, 45(12): 1227-1244. [19] Yoo E J, Kin J, Hosono E, et al.Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282. [20] 施轶. 锂离子电池石墨烯复合材料的研究[D]. 上海: 复旦大学, 2013. [21] Mun J, Ha H, Choi W, et al.Nano LiFePO4 in reduced graphene oxide framework for efficient high- rate lithium storage[J]. Journal of Power Sources, 2014, 251(251): 386-392. [22] Zhang Yin, Wang Wenchao, Li Penghui, et al.A simple solvothermal route to synthesize graphene- modified LiFePO4 cathode for high power lithium ion batteries[J]. Journal of Power Sources, 2012, 210(4): 47-53. [23] 雷兴领. 石墨烯/碳纳米管改性锂离子电池正极材料的制备及性能研究[D]. 广州: 广东工业大学, 2014. [24] 王亚萍. 喷雾—热化学反应法制备石墨烯复合磷酸铁锂锂离子电池正极材料的研究[D]. 深圳: 深圳大学, 2017. [25] Noh H K, Park H S, Jeong H Y, et al.Doubling the capacity of lithium manganese oxide spinel by a flexible skinny graphitic layer[J]. Angew Chem Int Ed Engl, 2014, 53(20): 5059-5063. [26] Cui Y L, Xu K, Yuan Z, et al.Synthesis and electrochemical performance of graphene modified nano-spinel LiMn2O4 cathode materials[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(1): 50-56. [27] Lin Binghui, Yin Qing, Hu Hengrun, et al.LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries[J]. Journal of Solid State Chemistry, 2014, 209(2): 23-28. [28] 蔡丹丹. 基于石墨烯的高性能锂离子电池负极材料的研究[D]. 广州: 华南理工大学, 2014. [29] 李娜. 高功率柔性锂离子电池电极材料的制备及其性能研究[D]. 合肥: 中国科学技术大学, 2013. [30] Qiu Huajun, Guan Yongxin, Luo Pan, et al.Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells[J]. Biosensors & Bioeletronics, 2017, 89(1): 85-95. [31] Xu Pengtao, Yang Jixiang, Wang Kesai, et al.Porous graphene: properties, preparation, and potential applications[J]. Chinese Science Bulletin, 2012, 57(23): 2948-2955. [32] Han Sheng, Wu Dongqing, Li Shuang, et al.Porous graphene materials for advanced electrochemical energy storage and conversion devices[J]. Advanced Materials, 2014, 26(6): 849-864. [33] Yoon H W, Cho Y H, Park H B, et al.Graphene- based membranes: status and prospects[J]. Philoso- phical Transactions, 2016, 374: 2060-2083. [34] Yin Fang, Lü Yingying, Che Renchao, et al.Two- dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage[J]. Journal of the American Chemical Society, 2013, 135(4): 1524-1530. [35] Jiang Zhongqing, Pei Bo, Manthiram A, et al.Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2013, 1(26): 7775-7781. [36] Li Xifei, Geng Dongsheng, Zhang Yong, et al.Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrocheminstry Communications, 2011, 13(8): 822-825. [37] Wu Zhongshuai, Ren Wencai, Li Xu, et al.Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. Acs Nano, 2011, 5(7): 5463-5471. [38] Xiong Dongbin, Li Xifei, Bai Zhimin, et al.Superior cathode performance of nitrogen-doped graphene frameworks for lithium ion batteries[J]. Acs Applied Materids & Interfaces, 2017, 9(12): 10643-10651. [39] Zhang Chenzhen, Mahmood N, Yin Han, et al.Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials, 2013, 25(35): 4932-4937. [40] Shen Baoshou, Chen Jiangtao, Yan Xingbin, et al.Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge[J]. RSC Advances, 2012, 2(17): 6761-6764. [41] Yang Zhi, Yao Zhen, Li Guifa, et al.Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. Acs Nano, 2012, 6(1): 205-211. [42] Ma Xinlong, Ning Guoqing, Qi Chuanlei, et al.Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries[J]. Acs Applied Materials & Interfaces, 2014, 6(16): 14415-14422. [43] Wang Zhongli, Xu Dan, Wang Hengguo, et al.In situ fabrication of porous graphene electrodes for high- performance energy storage[J]. Acs Nano, 2013, 7(3): 2422-2430. [44] Wu Zhongshuai, Wang Dawei, Ren Wencai, et al.Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Electrocheminstry Communications, 2010, 20: 3595-3602. [45] Kavan L, Rathousky J, Graetzel M, et al.Surfactant- templated TiO2 (anatase):? characteristic features of lithium insertion electrochemistry in organized nanostructures[J]. Journal of Physical Chemistry, 2000, 104(50): 12012-12020. [46] Zhou Guangmin, Wang Dawei, Yin Lichang, et al.Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage[J]. Acs Nano, 2012, 6(4): 3214-3223. [47] Qin Jian, He Chunnian, Zhao N, et al.Graphene networks anchored with Sn@graphene as lithium ion battery anode[J]. Acs Nano, 2014, 8(2): 1728-1738. [48] 刘佳. 锂离子电池SnO2纳米球/石墨烯复合材料的制备及其电化学性能的研究[D]. 重庆: 重庆大学, 2013. [49] 白雪君, 侯敏, 刘婵, 等. 锂离子电池用三维氧化锡/石墨烯水凝胶负极材料[J]. 物理化学学报, 2017, 33(2): 377-385. Bai Xuejun, Hou Min, Liu Chan, et al.3D SnO2/ graphene hydrogel anode material for lithium-ion battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385. [50] Wang Shuai, Shi Liyi, Chen Guorong, et al.In-situ synthesis of tungsten-doped SnO2 and graphene nanocomposites for high-performance anode materials of lithium-ion batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(20): 17163-17171. [51] Zhou Xiangyan, Chen Sanmei, Yang Juan, et al.Metal-organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery[J]. Acs Applied Materials & Interfaces, 2017, 9(16): 14309-14318. [52] Wu Songping, Han Cuiping, Iocozzia J, et al.Germanium-based nanomaterials for rechargeable batteries[J]. Angewandte Chemie, 2016, 55(28): 7898-7922. [53] Bryngelsson H, Eskhult J, Nyholm L, et al.Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries[J]. Chemistry of Materials, 2007, 19(5): 1170-1180. [54] Sun Hongtao, Sun Xiang, Hu Tao, et al.Graphene- wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries[J]. Journal of Physical Chemistry C, 2014, 118(5): 2263-2272. [55] Ran Tian, Wang Weiqiang, Huang Yaolin, et al.3D composites of layered MoS2 and graphene nanoribbons for high performance lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2016, 34(4): 13148-13154. [56] Xiao Wei, Wang Zhixing, Guo Huajun, et al.Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries[J]. Applied Surface Science, 2013, 266(2): 148-154. [57] Huang Xiaodan, Sun Bing, Chen Shuangqiang, et al.Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and super- capacitors[J]. Chemistry-An Asian Journal, 2014, 9(1): 206-211. [58] Deng Jingwen, Chen Linfeng, Sun Yangyong, et al.Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode[J]. Carbon, 2015, 92: 177-184. [59] Jing Mingjun, Zhou Minjie, Li Gangyong, et al.Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(11): 9662-9668. [60] Yang Yang, Huang Jingxin, Zeng Jing, et al.Direct electrophoretic deposition of binder-free Co3O4/ graphene sandwich-like hybrid electrode as remark- able lithium ion battery anode[J]. Acs Applied Materials & Interfaces, 2017, 9(7): 32801-32811. [61] Li Ting, Qin Aiqiong, Yang Lanlan, et al.In-situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(23): 19900-19907. [62] Bao Shujuan, Bao Qiaoliang, Li Changming, et al.Novel porous anatase TiO2 nanorods and their high lithium electroactivity[J]. Electrochemistry Communi- cations, 2007, 9(5): 1233-1238. [63] Ding Shujiang, Chen Junsong, Luan Deyan, et al.Graphene-supported anatase TiO2 nanosheets for fast lithium storage[J]. Chemical Communications, 2011, 47(20): 5780-5782. [64] Kong Dezhi, Ren Weina, Luo Yongsong, et al.Scalable synthesis of graphene-wrapped Li4Ti5O12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life[J]. Journal of Materials Chemistry A, 2014, 2(47): 20221-20230. [65] 林子夏. 介孔结构/石墨烯复合锂离子电池负极材料研究[D]. 南京: 南京大学, 2013. [66] 樊晓东. 金属氧化物/石墨烯锂离子电池负极材料的研究[D]. 天津: 天津工业大学, 2017. [67] 李娜. 高功率柔性锂离子电池电极材料的制备及其性能研究[D]. 合肥: 中国科学技术大学, 2013. [68] 戴世珍. 氮掺杂石墨烯基复合材料的制备及其电化学性能研究[D]. 南昌: 东华理工大学, 2016. [69] González A, Goikolea E, Barrena J A, et al.Review on supercapacitors: technologies and materials[J]. Renewable & Sustainable Energy Reviews, 2016, 58: 1189-1206. [70] 彭旭, 李典奇, 彭晶, 等. 二维石墨烯和准二维类石墨烯在全固态柔性超级电容器中的应用[J]. 科学通报, 2013, 58(28): 2886-2894. Peng Xu, Li Dianqi, Peng Jing, et al.Two- dimensional graphene/quasi-two-dimensional graphene analogues for flexible supercapacitor in all-solid- state[J]. Chinese Science Bulletin, 2013, 58(28): 2886-2894. [71] Liu Chenguang, Yu Zhenning, Neff D, et al.Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10(12): 4863-4868. [72] Stoller M D, Park S, Zhu Yanwu, et al.Graphene- based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. [73] 刘道庆. 石墨烯基高密度碳材料的制备及其超级电容性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [74] 汪建德, 彭同江, 孙红娟, 等. 三维还原氧化石墨烯的制备及超级电容性能[J]. 人工晶体学报, 2015, 44(1): 78-84. Wang Jiande, Peng Tongjiang, Sun Hongjuan, et al.Preparation and supercapacitive performance of three dimensional reduced graphene oxide[J]. Journal of Synthetic Crystals, 2015, 44(1): 78-84. [75] 高涛. 两种用作超级电容材料的石墨烯复合材料制备及性能研究[D]. 长沙: 湖南大学, 2015. [76] 赵琦. 多孔薄膜石墨烯双电层储能实验与模拟研究[D]. 杭州: 浙江大学, 2017. [77] 祝伟光. 基于石墨烯纸的超级电容储能特性研究[D]. 杭州: 浙江大学, 2015. [78] 赵廷凯, 吉翔麟, 金文博, 等. 石墨烯/碳纳米管复合材料的制备及其电化学电容性能[J]. 科学通报, 2017, 62(11): 1185-1190. Zhao Tingkai, Ji Xianglin, Jin Wenbo, et al.Preparation and electrochemical capacitive performance of graphene/carbon nanotube composite[J]. Chinese Science Bulletin, 2017, 62(11): 1185-1190. [79] 陈宽, 阮殿波, 傅冠生, 等. 轨道交通用超级电容器研发概述[J]. 电池, 2014, 44(5): 296-298. Chen Kuan, Ruan Dianbo, Fu Guansheng, et al.Research and development summary of super- capacitor used in rail transit[J]. Battery Bimonthly, 2014, 44(5): 296-298. [80] 张震. 镍基材料及其石墨烯复合物的超级电容特性研究[D]. 湘潭: 湘潭大学, 2016. [81] 陈俊. Co-Mn尖晶石/石墨烯复合材料的制备及超级电容性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [82] 杨晓彤. 石墨烯复合材料的制备及超级电容性能研究[D]. 郑州: 郑州大学, 2015. [83] 刘亭亭. 水热法合成石墨烯-锰系化合物及其超级电容性能[J]. 化学反应工程与工艺, 2016, 32(2): 170-175. Liu Tingting.Synthesis of graphene with manganese compounds via a hydrothermal method and their super-capacitances[J]. Chemical Reaction Engineering and Technology, 2016, 32(2): 170-175. [84] 严涛. 三维镍/钴电极材料的构建及超级电容性能研究[D]. 无锡: 江南大学, 2016. [85] 周晓, 孙敏强, 王庚超. 石墨烯负载新型π-共轭聚合物纳米复合电极材料的合成及其超级电容特性[J]. 物理化学学报, 2016, 32(4): 975-982. Zhou Xiao, Sun Minqiang, Wang Gengchao.Synthesis and supercapacitance performance of graphene-supported π-conjugated polymer nanocom- posite electrode materials[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 975-982. [86] 赵晓婵, 房艳, 房春晖, 等. 石墨烯包覆分子筛复合电极材料的制备及其性能研究[J]. 无机材料学报, 2017, 32(4): 386-392. Zhao Xiaochan, Fang Yan, Fang Chunhui, et al.Preparation and electrochemical performance of composite electrode material of molecular sieve coated with graphene[J]. Journal of Inorganic Materials, 2017, 32(4): 386-392. [87] 徐芮. 还原氧化石墨烯平面片上电极及超级电容研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [88] Liao Lei, Bai Jingwei, Qu Yongquan, et al.High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6711-6715. [89] Park C H, Yang Li, Son Y W, et al.New generation of massless Dirac fermions in graphene under external periodic potentials[J]. Physical Review Letters, 2008, 101(12): 126804. [90] 宋光耀. 边界裁剪对石墨烯纳米带电子性质的调控[D]. 上海: 华东师范大学, 2015. [91] Schwierz F.Graphene for electronic applications- transistors and more[C]//Bipolar/bicmos Circuits & Technology Meeting (USA): IEEE Press, 2010: 173-179. [92] Jiao Liying, Zhang Li, Wang Xinran, et al.Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458: 877-880. [93] Yang Yinxiao, Murali R.Impact of size effect on graphene nanoribbon transport[J]. IEEE Electron Device Letters, 2010, 31(3): 237-239. [94] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577. Liu Xiaobo, Kou Zongkui, Mu Shichun.Porous graphene materials[J]. Progress in Chemistry, 2015, 27(11): 1566-1577. [95] 于伟, 谢华清, 陈立飞, 等. 石墨烯制备方法及粒径对复合材料热导率的影响[J]. 工程热物理学报, 2016, 37(1): 168-171. Yu Wei, Xie Huaqing, Chen Lifei, et al.The graphene preparation methods and the size effect on the thermal conductivity of composites[J]. Journal of Engineering Thermophysics, 2016, 37(1): 168-171. [96] Manna A, Pati S.Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study[J]. Nanoscale, 2010, 7(2): 1190-1195. [97] Denis P A.Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur[J]. Chemical Physics Letters, 2010, 492(4): 251-257. [98] Haberer D, Vyalikh D V, Taioli S, et al.Tunable band gap in hydrogenated quasi-free-standing graphene[J]. Nano Letters, 2010, 10(9): 3360-3366. [99] Mccann E.Interlayer asymmetry gap in the electronic band structure of bilayer graphene[J]. Physica Status Solidi, 2006, 244(11): 4112-4117. [100] Zhang Yuanbo, Tang T, Girit C, et al.Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820-823. [101] 陈卫. 石墨烯场效应器件制备及其电子输运特性研究[D]. 长沙: 国防科学技术大学, 2015. [102] Zhong Jianxin, Gui Gui, Li Jin.Band structure engineering of graphene by strain[C]//APS Meeting (USA): IEEE Press, 2008, 1(6161): 471-472. [103] Ni Zhenhua, Yu Ting, Lu Yunhao, et al.Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening[J]. Acs Nano, 2008, 2(11): 2301-2305. [104] 柴正. 基于化学气相沉积的石墨烯场效应晶体管研究[D]. 西安: 西安电子科技大学, 2014. [105] 王永存, 薛晨阳, 刘耀英, 等. 石墨烯晶体管的加工及测试研究[J]. 仪表技术与传感器, 2014, 51(2): 39-41. Wang Yongcun, Xue Chenyang, Liu Yaoying, et al.Processing and testing of graphene field-effect transistors[J]. Instrument Technique and Sensor, 2014, 51(2): 39-41. [106] 孙红辉. 石墨烯场效应晶体管的制备及其性能研究[D]. 长沙: 国防科学技术大学, 2014. [107] Chen Jianhao, Jang C, Xiao S, et al.Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3(4): 206-209. [108] Banszerus L, Schmitz M, Engels S, et al.Ballistic transport exceeding 28μm in CVD grown graphene[J]. Nano Letters, 2016, 16(2): 1387-1391. [109] Lin Yuming, Jenkins K A, Valdesgarcia A, et al.Operation of graphene transistors at gigahertz frequencies[J]. Nano Letters, 2009, 9(1): 422-426. [110] Liao Lei, Lin Yungchen, Bao Mingqiang, et al.High- speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467(7313): 305-308. [111] 杨乐陶. 石墨烯场效应晶体管的制备及性能研究[D]. 济南: 山东大学, 2016. [112] 张庆伟, 李平, 王刚, 等. 石墨烯晶体管转移特性对栅压的依赖现象研究[J]. 微电子学与计算机, 2017, 34(6): 36-39. Zhang Qingwei, Li Ping, Wang Gang, et al.Graphene transistor transfer properties phenomenon research dependence on gate voltage[J]. Microelectronics & Computer, 2017, 34(6): 36-39. [113] Liu W, Yu H, Wei J, et al.Impact of process induced defects on the contact characteristics of Ti/graphene devices[J]. Electrochemical and Solid-State Letters, 2011, 14(12): 67-69. [114] Nagashio K, Nishimura T, Kita K.Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance[C]//2009 IEEE International Electron Devices Meeting (USA): Baltimore, MD, USA, 2009: 1-4. [115] Nagashio K, Nishimura T, Kita K, et al.Contact resistivity and current flow path at metal/graphene contact[J]. Applied Physics Letters, 2010, 97(14): 143514. [116] Matsuda Y, Deng Weiqiao, Goddard W A.Contact resistance for “end-contacted” metal-graphene and metal-nanotube interfaces from quantum mechanics[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17845-17850. [117] Huard B, Stander N, Sulpizio J A, et al.Evidence of the role of contacts on the observed electron-hole asymmetry in graphene[J]. Physical Review B, 2008, 78(12): 121402. [118] 蔚翠. 石墨烯晶体管工艺新方法获美国专利授权[J]. 半导体技术, 2016, 41(12): 959. Wei Chui.New method of graphene transistor process is granted by American patent[J]. Semicon- ductor Technology, 2016, 41(12): 959. [119] 余凤斌, 夏祥华, 王文华, 等. 导电聚合物电磁屏蔽材料及其应用[J]. 绝缘材料, 2008, 41(1): 16-19. Yu Fengbin, Xia Xianghua, Wang Wenhua, et al.Shielding mechanism and application of conductive polymer electromagnetic shielding material[J]. Insulating Materials, 2008, 41(1): 16-19. [120] 杨文彬, 张丽, 刘菁伟, 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3): 91-97. Yang Wenbin, Zhang Li, Liu Jingwei, et al.Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering, 2015, 43(3): 91-97. [121] 王燕枫. 纳米铁氧体/石墨烯基水性电磁屏蔽涂料的制备及性能研究[D]. 北京: 北京理工大学, 2016. [122] Zhang Dongdong, Zhao Donglin, Zhang Jiming, et al.Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite[J]. Journal of Alloys & Compounds, 2014, 589(9): 378-383. [123] Xu H, Hong Bi, Yang R.Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites[J]. Journal of Applied Physics, 2012, 111(7): 16229. [124] 吴佳明. 石墨烯对碳纤维聚合物复合材料电磁屏蔽性能的影响[D]. 济南: 济南大学, 2016. [125] Gupta T K, Singh B P, Singh V N, et al.MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties[J]. Journal of Materials Chemistry A, 2014, 2(12): 4256-4263. [126] 李国显, 王涛, 薛海荣, 等. 石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J]. 航空学报, 2011, 32(9): 1732-1739. Li Guoxian, Wang Tao, Xue Hairong, et al.Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1732-1739. [127] Chen Zongping, Xu Chuan, Ma Chaoqun, et al.Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300. [128] Hsiao S T, Ma C, Tien H W, et al.Using a non- covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/ water-borne polyurethane composite[J]. Carbon, 2013, 60(14): 57-66. [129] 廖勇飞. 轻质微孔聚碳酸酯/石墨烯复合材料研究[D]. 北京: 北京化工大学, 2015. [130] Zhang Haobin, Yan Qing, Zheng Wenge, et al.Tough graphene-polymer microcellular foams for electro- magnetic interference shielding[J]. Acs Applied Materials & Interfaces, 2011, 3(3): 918-924. [131] Yan Dingxiang, Pang Huan, Xu Ling, et al.Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide[J]. Nanotechno- logy, 2014, 25(14): 145705. [132] Yan Dingxiang, Pang Huan, Li Bo, et al.Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding[J]. Advanced Functional Materials, 2015, 25(4): 559-566. [133] 陈若凡. 基于石墨烯海绵制备的复合材料及薄膜电磁屏蔽性能研究[D]. 黑龙江: 哈尔滨工业大学, 2017. [134] Zhao Biao, Zhao Chongxiang, Li Ruosong, et al.Flexible, ultrathin, and high-efficiency electro- magnetic shielding properties of poly (vinylidene fluoride)/carbon composite films[J]. Acs Applied Materials & Interfaces, 2017, 9(4): 20873-20884. [135] 赵慧慧, 姬科举, 许银松, 等. GNS/PMMA泡沫复合材料的制备及其电磁屏蔽性能[J]. 材料科学与工程学报, 2014, 32(3): 358-365. Zhao Huihui, Ji Keju, Xu Yingsong, et al.Preparation of GNS/PMMA foams for electromagnetic inter- ference shielding[J]. Journal of Materials Science and Engineering, 2014, 32(3): 358-365. [136] 葛炳辉. 纳米Fe3O4协同增强石墨烯/水性聚氨酯复合膜的电磁屏蔽性能研究[D]. 西安: 陕西科技大学, 2016. [137] 耿欣. 聚苯胺/石墨烯与Fe3O4复合材料的制备及吸波性能研究[D]. 北京: 北京交通大学, 2015. [138] Biswas S, Arief I, Panja S S, et al.Absorption- dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon[J]. Acs Applied Materials & Interfaces, 2017, 9(3): 3030-3039. [139] Sharif F, Arjmand M, Moud A, et al.Segregated hybrid poly (methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding[J]. Acs Applied Materials & Interfaces, 2017, 9(16): 14171-14179.