Abstract:Recently, aircraft, spaceflight and new energy industries have been in a period of rapid development. DC high-power relay has also been widespread concerned as a key component in DC power distribution, management and control systems to complete the implementation of breaking, power switching and fault protection and other features. Breaking arc plays a significant role in the DC current interruption that is formed in the interrupting process of DC high power relay. Therefore, the study on arc characteristics and arc erosion is a key issue in improving the reliability and quantifying the estimated electrical lifespan of DC high-power relays. Arc is a basic scientific problem involving the discharge of plasma physics, electromagnetic field, fluid mechanics, heat transfer and other interdisciplinary. Due to some difficulties in experimental and theoretical research, the current understanding of physical mechanism is not yet clear, such as arc erosion and breaking arc characteristics in DC relay switching devices. In this paper, previous simulation and experimental studies on the switching arc phenomenon characteristics and arc erosion in these DC high power relays are reviewed. Moreover, the future development research on switching arc in the switching devices such as DC high power relays is presented.
翟国富, 薄凯, 周学, 张勇. 直流大功率继电器电弧研究综述[J]. 电工技术学报, 2017, 32(22): 251-263.
Zhai Guofu, Bo Kai, Zhou Xue, Zhang Yong. Investigation on Breaking Arc in DC High-Power Relays: A Review. Transactions of China Electrotechnical Society, 2017, 32(22): 251-263.
[1] 佟为明, 翟国富. 低压电器继电器及其控制系统[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003. [2] 荣命哲, 杨飞, 吴翊, 等. 直流断路器电弧研究的新进展[J]. 电工技术学报, 2014, 29(1): 1-9. Rong Mingzhe, Yang Fei, Wu Yi, et al. New developments in arc research in DC circuit breaker[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 1-9. [3] 陈德桂. 直流开断技术的进展与新型直流断路器[J]. 电器与能效管理技术, 2014(21): 1-5. Chen Degui. Development of modern DC switching technologies and new type of DC circuit breaker[J]. Electrical and Energy Management Technology, 2014(21): 1-5. [4] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al. A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [5] 翟国富, 崔行磊, 杨文英. 电磁继电器产品及研究技术发展综述[J]. 电器与能效管理技术, 2016(2): 1-8. Zhai Guofu, Cui Xinglei, Yang Wenying. Overview for development of research and technologies of electromagnetic relays[J]. Electrical and Energy Management Technology, 2016(2): 1-8. [6] 李兴文. 低压断路器研发新技术综述[J]. 电器与能效管理技术, 2015(9): 1-7. Li Xingwen. Review of the new research and development technologies for low voltage circuit breakers[J]. Electrical and Energy Management Technology, 2015(9): 1-7. [7] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 276-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 276-282. [8] Kharin S N. Mathematical models of heat and mass transfer in electrical contacts[C]//Proceeding of the 61st IEEE Holm Conference on Electrical Contacts, San Diego, CA, USA, 2015: 1-21. [9] Long N P, Takana Y, Uesugi Y. Numerical investi- gation of the swirl gas angle and arc current dependence on evaporation of hafnium cathode in a plasma cutting arc[J]. IEEE Transactions on Plasma Science, 2012, 40(2): 497-504. [10] 崔行磊. 直流电弧作用下的触头材料的侵蚀机理和转移特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [11] 徐坚. 汽车继电器用AgMeO电触头材料抗熔焊行为的研究[D]. 武汉: 华中科技大学, 2008. [12] He X, Debroy T, Fuerschbach P W. Alloying element vaporization during laser spot welding of stainless steel[J]. Journal of Physics D: Applied Physics, 2003, 36(23): 3079. [13] Bellantone R, Hahn Y. Gas dynamics resulting from laser vaporization of metals in one dimension, I[J]. Journal of Applied Physics, 1994, 6(3): 1436-1446. [14] DebRoy T, Basu S, Mundra K. Probing laser induced metal vaporization by gas dynamics and liquid pool transport phenomena[J]. Journal of Applied Physics, 1991, 70(3): 1313-1319. [15] Mundra K, Debroy T. Calculation of weld metal composition change in high-power conduction mode carbon dioxide laser-welded stainless steels[J]. Metallurgical Transactions B, 1993, 24(1): 145-155. [16] Zhou Xue, Cui Xinglei, Zhai Guofu. Evaporation erosion of contacts under static arc by gas dynamics and molten pool simulation[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4149-4160. [17] Cui Xinglei, Zhou Xue, Zhai Guofu, et a1. Evaporation erosion during relay contact breaking process based on a simplified arc model[J]. Plasma Science and Technology, 2016, 18(5): 512-519. [18] Wang K J, Wang Q P. Erosion of silverbase, material contacts by breaking arcs[C]//Proceedings of the Thirty- Sixth IEEE Holm Conference and the Fifteenth International Conference on Electrical Contacts, Montreal, Quebec, Canada, 1991, 114: 293-297. [19] Mesyats G A. Ecton mechanism of the vacuum arc cathode spot[J]. IEEE Transactions on Plasma Science, 2014, 40(10): 2722-2723. [20] Mesyats G A, Uimanov I V. Simulation of the molten metal behavior during the crater formation on cathode surface in a vacuum arc[C]//XXVI International Symposium on Discharge and Electrical Insulation in Vacuum, Mumbai, India, 2014: 205-208. [21] Pons F, Cherkaoui M. An electrical arc erosion model valid for high current vaporization and sputter erosion[C]//Proceeding of the 54th IEEE Holm Conference on Electrical Contacts, Orlando, FL, USA, 2008: 9-14. [22] 吴细秀. 开关电器触头材料喷溅侵蚀模型研究及其试验[D]. 武汉: 华中科技大学, 2005. [23] Kharin S N, Thermo-capillary mechanism of contact erosion during arcing[C]//Proceeding of the 36th IEEE Holm Conference and 13th International Conference on Electric Contacts, Montreal, Canada, 1990: 37-47. [24] Slade P G. The transition from the molten metal bridge to the metallic phase bridge column arc between electrical contacts opening in vacuum[C]// Proceedings of 23rd International Symposium on Discharges and Electrical Insulation in Vacuum, Bucharest, Romania, 2008: 198-201. [25] Zhai Guofu, Bo Kai, Chen Mo, et a1. Investigation on plasma jet flow phenomena during DC air arc motion in a bridge-type contacts[J]. Plasma Science and Technology, 2016, 18(5): 485-489. [26] 张昆华, 管伟明, 郭俊梅, 等. 大变形Ag/Ni20纤维复合电接触材料电弧侵蚀及形貌特征[J]. 稀有金属材料与工程, 2011, 40(5): 853-857. Zhang Kunhua, Guan Weiming, Guo Junmei, et al. Arc erosion and morphological characters of Ag/Ni20 fiber electrical composites by severe plastic defor- mation[J]. Rare Metal Materials and Engineering, 2011, 40(5): 853-857. [27] 翟国富, 周学, 杨文英. 纵向与横向磁场作用下分断直流感性负载时的电弧特性实验[J]. 电工技术学报, 2011, 26(1): 68-74. Zhai Guofu, Zhou Xue, Yang Wenying. Experiment on DC inductive arcs driven by axial and transverse magnetic fields[J]. Transactions of China Electro- technical Society, 2011, 26(1): 68-74. [28] Zhai G, Cui X, Zhou X. Effect of axial and transverse magnetic fields on the arc duration and material transfer[J]. IEICE Transactions on Electronics, 2012, 95(3): 395-400. [29] Zhou X, Chen M, Yu H, et al. An experimental system based on permanent magnet solenoid for studying arc characteristics when opening a DC high power load[C]//Proceedings of 5th International Con- ference of Reliability of Electrotechnical Product & Electrical Contact, 2014: 257-263. [30] 陶麒鹦, 周晓龙, 周允红, 等. AgCuO电触头材料的接触电阻及电弧侵蚀形貌分析[J]. 稀有金属材料与工程, 2015, 44(5): 1219-1223. Tao Qiying, Zhou Xiaolong, Zhou Yunhong, et al. Contact resistance and arc erosion morphology of AgCuO electrical contact material[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1219-1223. [31] Zhou Xue, Chen Mo, Zhai Guofu. Comparisons on arc behavior and contact performance between Cu and Cu-Mo alloys in a bridge-type contact system[J]. IEICE Transaction on Electronics, 2015, E98-C(9): 904-910. [32] McBride J W. A review of volumetric erosion studies in low voltage electrical contacts[J]. IEICE Transa- ction on Electronics, 2003, E86-C(6): 908-914. [33] Makoto Hasegawa, Keisuke Takahashi, Daichi Kawamura, et al. Comparison of transfer and erosion shapes on Ag and AgSnO 2 contacts caused by break arc discharges in a DC inductive load circuit[C]// Proceeding of the 59th IEEE Holm Conference on Electrical Contacts, Newport, RI, USA, 2013: 288-294. [34] 刘亚奇. 桥式触头分断电弧特性实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [35] 周学. 直流继电器分断电弧及其抑制措施的仿真和实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. [36] 余铁辉. 铁路机车用混合式直流接触器及其一体化方案的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. [37] Zhai Guofu, Cui Xinglei, Zhou Xue. Study on the retrograde motion of arc under transverse magnetic field[J]. IEICE Transactions on Electronics, 2010, E93-C(9): 1431-1436. [38] Zhou Xue, Chen Mo, Cui Xinglei, et al. Study on arc characteristics of a DC bridge-type contact in air and nitrogen at different pressure[J]. IEICE Transactions on Electronics, 2014, E97(9): 850-857. [39] Cui Xinglei, Zhou Xue, Chen Mo, et a1. Experiment research on re-strike phenomenon occurring during high-voltage direct-current breaking process under transverse magnetic field[C]//Proceeding of the 61st IEEE Holm Conference on Electrical Contacts, San Diego, CA, 2015: 187-190. [40] Bo Kai, Zhou Xue, Zhai Guofu. Simulation on dwell stage of arcs in bridge type contacts for high-voltage dc relay[C]//Proceedings of the 62nd IEEE Holm Conference on Electrical Contacts, Clearwater, FL, 2016: 163-166. [41] 辛超, 武建文. 直流氢气-氮气混合气体电弧开断过程实验研究[J]. 电工技术学报, 2015, 30(13): 117-124. Xin Chao, Wu Jianwen. Experimental study on the breaking process of DC hydrogen-nitrogen mixed gas arc[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 117-124. [42] Xin Chao, Wu Jianwen, Liu Bin, et al. Plasma characteristics of DC hydrogen-nitrogen mixed gas arc under high pressure[J]. IEEE Transactions on Plasma Science, 2014, 40(10): 2722-2723. [43] 臧春艳. 航天继电器稳态电弧等离子体电离过程与电弧特性研究[D]. 武汉: 华中科技大学, 2006. [44] 臧春艳, 何俊佳, 李正瀛. 微量水蒸气对密封继电器内部氮气电弧的影响[J]. 高电压技术, 2008, 34(2): 405-408. Zang Chunyan, He Junjia, Li Zhengying. Influence of little water vapor on nitrogen arc in sealed relay[J]. High Voltage Engineering, 2008, 34(2): 405-408. [45] Yuji Shiba, Yukinaga Morishita, Shuhei Kaneko, et al. Study of DC circuit breaker of H 2 -N 2 mixture gas for high voltage[J]. IEEJ Transactions on Power and Energy, 2008, 128(11): 1407-1413. [46] Yukinaga Morishita, Tatsuya Ishikawa, Iwao Yamaguchi, et al. Application of DC breakers and concepts for superconducting fault-current limiter for a DC distribution[J]. IEEE Transactions on Plasma Science, 2009, 19(4): 3658-3664. [47] Manfred Lindmayer. Simulation of switching arcs under transverse magnetic fields for DC inter- ruption[J]. IEEE Transactions on Plasma Science, 2016, 44(2): 187-194. [48] Koichiro Sawa, Shigeru Tsujimura, Shigeki Motoda. Fundamental characteristics of arc extinction by magnetic blow-out at DC voltages ( II[C]// Proceeding of the 61th IEEE Holm Conference on Electrical Contacts, San Diego, CA, USA, 2015: 154-160. [49] Sekikawa J. Occurrence of reignitions of break arcs when moving range of arc spots are restricted within the contact surfaces[J]. IEICE Technical Report Emd, 2016, E99.C(9): 992-998. [50] Hasegawa M. Influences of contact opening speeds on break arc behaviors of AgSnO 2 contact pairs in DC inductive load conditions[C]//Proceeding of the 61st IEEE Holm Conference on Electrical Contacts, San Diego, CA, 2015: 1-4. [51] 吴翊, 荣命哲, 王小华, 等. 触头打开过程中低压空气电弧等离子体的动态分析[J]. 电工技术学报, 2008, 23(5): 12-17. Wu Yi, Rong Mingzhe, Wang Xiaohua, et al. Dynamic analysis of low-voltage air arc plasma during contact opening process[J]. Transactions of China Electrotechnical Society, 2008, 23(5): 12-17. [52] Wu Yi, Rong Mingzhe, Sun Zhiqiang, et al. Numerical analysis of arc plasma behavior during arc contact opening process in low voltage switching device[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 795-802. [53] 吴翊, 荣命哲, 杨飞, 等. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析[J]. 物理学报, 2008, 57(9): 5761-5767. Wu Yi, Rong Mingzhe, Yang Fei, et al. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma[J]. Acta Physica Sinica, 2008, 57(9): 5761-5767. [54] 王伟宗, 荣命哲, Anthony B. Murphy, 等. 高温氮气电弧等离子体物性参数的计算分析[J]. 高电压技术, 2010, 36(11): 2777-2784. Wang Weizong, Rong Mingzhe, Anthony B. Murphy, et al. Computation analysis on properties of high temperature nitrogen arc plasmas[J]. High Voltage Engineering, 2010, 36(11): 2777-2784. [55] Wang Weizong, Rong Mingzhe, Yan Jiudun, et al. The reactive thermal conductivity of thermal equilibrium and non-equilibrium plasmas: appli- cation to nitrogen[J]. IEEE Transactions on Plasma Science, 2012, 40(4): 980-989.